Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Sci Adv ; 9(26): eadf2860, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390209

RESUMO

Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..


Assuntos
Neoplasias da Mama , Humanos , Feminino , Idoso , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Fator de Crescimento Epidérmico , Ciclo Celular/genética , Divisão Celular , Mutação , Receptores de Estrogênio
2.
Sci Adv ; 9(17): eade2675, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115922

RESUMO

Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Predisposição Genética para Doença , Sequenciamento Completo do Genoma , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Proteínas Supressoras de Tumor/genética
3.
Genome Med ; 15(1): 18, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927505

RESUMO

BACKGROUND: Rapidly and efficiently identifying critically ill infants for whole genome sequencing (WGS) is a costly and challenging task currently performed by scarce, highly trained experts and is a major bottleneck for application of WGS in the NICU. There is a dire need for automated means to prioritize patients for WGS. METHODS: Institutional databases of electronic health records (EHRs) are logical starting points for identifying patients with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for rapid and whole genome sequencing (rWGS and WGS) directly from clinical notes. Our approach combines a clinical natural language processing (CNLP) workflow with a machine learning-based prioritization tool named Mendelian Phenotype Search Engine (MPSE). RESULTS: MPSE accurately and robustly identified NICU patients selected for WGS by clinical experts from Rady Children's Hospital in San Diego (AUC 0.86) and the University of Utah (AUC 0.85). In addition to effectively identifying patients for WGS, MPSE scores also strongly prioritize diagnostic cases over non-diagnostic cases, with projected diagnostic yields exceeding 50% throughout the first and second quartiles of score-ranked patients. CONCLUSIONS: Our results indicate that an automated pipeline for selecting acutely ill infants in neonatal intensive care units (NICU) for WGS can meet or exceed diagnostic yields obtained through current selection procedures, which require time-consuming manual review of clinical notes and histories by specialized personnel.


Assuntos
Unidades de Terapia Intensiva Neonatal , Processamento de Linguagem Natural , Humanos , Recém-Nascido , Sequenciamento Completo do Genoma/métodos , Fenótipo , Aprendizado de Máquina
4.
Genet Med Open ; 1(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38827422

RESUMO

Purpose: Modeling disease variants in animals is useful for drug discovery, understanding disease pathology, and classifying variants of uncertain significance (VUS) as pathogenic or benign. Methods: Using Clustered Regularly Interspaced Short Palindromic Repeats, we performed a Whole-gene Humanized Animal Model procedure to replace the coding sequence of the animal model's unc-18 ortholog with the coding sequence for the human STXBP1 gene. Next, we used Clustered Regularly Interspaced Short Palindromic Repeats to introduce precise point variants in the Whole-gene Humanized Animal Model-humanized STXBP1 locus from 3 clinical categories (benign, pathogenic, and VUS). Twenty-six phenotypic features extracted from video recordings were used to train machine learning classifiers on 25 pathogenic and 32 benign variants. Results: Using multiple models, we were able to obtain a diagnostic sensitivity near 0.9. Twenty-three VUS were also interrogated and 8 of 23 (34.8%) were observed to be functionally abnormal. Interestingly, unsupervised clustering identified 2 distinct subsets of known pathogenic variants with distinct phenotypic features; both p.Tyr75Cys and p.Arg406Cys cluster away from other variants and show an increase in swim speed compared with hSTXBP1 worms. This leads to the hypothesis that the mechanism of disease for these 2 variants may differ from most STXBP1-mutated patients and may account for some of the clinical heterogeneity observed in the patient population. Conclusion: We have demonstrated that automated analysis of a small animal system is an effective, scalable, and fast way to understand functional consequences of variants in STXBP1 and identify variant-specific intensities of aberrant activity suggesting a genotype-to-phenotype correlation is likely to occur in human clinical variations of STXBP1.

5.
Orphanet J Rare Dis ; 17(1): 440, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528660

RESUMO

PURPOSE: NGLY1 Deficiency is an ultra-rare, multisystemic disease caused by biallelic pathogenic NGLY1 variants. The aims of this study were to (1) characterize the variants and clinical features of the largest cohort of NGLY1 Deficiency patients reported to date, and (2) estimate the incidence of this disorder. METHODS: The Grace Science Foundation collected genotypic data from 74 NGLY1 Deficiency patients, of which 37 also provided phenotypic data. We analyzed NGLY1 variants and clinical features and estimated NGLY1 disease incidence in the United States (U.S.). RESULTS: Analysis of patient genotypes, including 10 previously unreported NGLY1 variants, showed strong statistical enrichment for missense variants in the transglutaminase-like domain of NGLY1 (p < 1.96E-11). Caregivers reported global developmental delay, movement disorder, and alacrima in over 85% of patients. Some phenotypic differences were noted between males and females. Regression was reported for all patients over 14 years old by their caregivers. The calculated U.S. incidence of NGLY1 Deficiency was ~ 12 individuals born per year. CONCLUSION: The estimated U.S. incidence of NGLY1 indicates the disease may be more common than the number of patients reported in the literature suggests. Given the low frequency of most variants and proportion of compound heterozygotes, genotype/phenotype correlations were not distinguishable.


Assuntos
Defeitos Congênitos da Glicosilação , Feminino , Humanos , Masculino , Defeitos Congênitos da Glicosilação/genética , Genótipo , Incidência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Doenças Raras , Sistema de Registros
6.
Sci Rep ; 12(1): 16945, 2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210382

RESUMO

Over the past decade, advances in genetic testing, particularly the advent of next-generation sequencing, have led to a paradigm shift in the diagnosis of molecular diseases and disorders. Despite our present collective ability to interrogate more than 90% of the human genome, portions of the genome have eluded us, resulting in stagnation of diagnostic yield with existing methodologies. Here we show how application of a new technology, long-read sequencing, has the potential to improve molecular diagnostic rates. Whole genome sequencing by long reads was able to cover 98% of next-generation sequencing dead zones, which are areas of the genome that are not interpretable by conventional industry-standard short-read sequencing. Through the ability of long-read sequencing to unambiguously call variants in these regions, we discovered an immunodeficiency due to a variant in IKBKG in a subject who had previously received a negative genome sequencing result. Additionally, we demonstrate the ability of long-read sequencing to detect small variants on par with short-read sequencing, its superior performance in identifying structural variants, and thirdly, its capacity to determine genomic methylation defects in native DNA. Though the latter technical abilities have been demonstrated, we demonstrate the clinical application of this technology to successfully identify multiple types of variants using a single test.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Bases , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Quinase I-kappa B , Análise de Sequência de DNA/métodos
7.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916866

RESUMO

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Domínios Proteicos , Sequenciamento do Exoma
8.
Brain ; 145(10): 3383-3390, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35737950

RESUMO

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Assuntos
Endocanabinoides , Doenças do Sistema Nervoso , Humanos , Criança , Fenótipo , Doenças do Sistema Nervoso/genética , Heterozigoto , Síndrome , Proteínas Mutantes
9.
Ther Adv Med Oncol ; 14: 17588359221075458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154416

RESUMO

BACKGROUND: Estrogen receptor positive (ER+) breast cancer is one of the most commonly diagnosed malignancies in women irrespective of their race or ethnicity. While Black women with ER+ breast cancer are 42% more likely to die of their disease than White women, molecular mechanisms underlying this disparate outcome are understudied. Recent studies identify DNA damage repair (DDR) genes as a new class of endocrine therapy resistance driver that contributes to poor survival among ER+ breast cancer patients. Here, we systematically analyze DDR regulation in the tumors and normal breast of Black women and its impact on survival outcome. METHOD: Mutation and up/downregulation of 104 DDR genes in breast tumor and normal samples from Black patients relative to White counterparts was assessed. For DDR genes that were differently regulated in the tumor samples from Black women in multiple datasets associations with survival outcome were tested. RESULTS: Overall, Black patient tumors upregulate or downregulate RNA levels of a wide array of single strand break repair (SSBR) genes relative to their white counterparts and uniformly upregulate double strand break repair (DSBR) genes. This DSBR upregulation was also detectable in samples of normal breast tissue from Black women. Eight candidate DDR genes were reproducibly differently regulated in tumors from Black women and associated with poor survival. A unique DDR signature comprised of simultaneous upregulation of homologous recombination gene expression and downregulation of SSBR genes was enriched in Black patients. This signature associated with cell cycle dysregulation (p < 0.001), a hallmark of endocrine therapy resistance, and concordantly, with significantly worse survival outcomes in all datasets analyzed (hazard ratio of 9.5, p < 0.001). CONCLUSION: These results constitute the first systematic analysis of DDR regulation in Black women and provide strong rationale for refining biomarker profiles to ensure precision medicine for underserved populations.

10.
Cancer Res ; 81(10): 2703-2713, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782098

RESUMO

Germline POT1 mutations are found in a spectrum of cancers and confer increased risk. Recently, we identified a series of novel germline POT1 mutations that predispose carrier families to the development of glioma. Despite these strong associations, how these glioma-associated POT1 mutations contribute to glioma tumorigenesis remains undefined. Here we show that POT1-G95C increases proliferation in glioma-initiating cells in vitro and in progenitor populations in the developing brain. In a native mouse model of glioma, loss of Pot1a/b resulted in decreased survival in females compared with males. These findings were corroborated in human glioma, where low POT1 expression correlated with decreased survival in females. Transcriptomic and IHC profiling of Pot1a/b-deficient glioma revealed that tumors in females exhibited decreased expression of immune markers and increased expression of cell-cycle signatures. Similar sex-dependent trends were observed in human gliomas that had low expression of POT1. Together, our studies demonstrate context-dependent functions for POT1 mutation or loss in driving progenitor proliferation in the developing brain and sexual dimorphism in glioma. SIGNIFICANCE: This study shows that manipulation of POT1 expression in glioma has sex-specific effects on tumorigenesis and associated immune signatures.


Assuntos
Carcinogênese/patologia , Proliferação de Células , Glioma/patologia , Mutação , Caracteres Sexuais , Proteínas de Ligação a Telômeros/metabolismo , Transcriptoma , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular , Feminino , Glioma/genética , Glioma/imunologia , Glioma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-33028643

RESUMO

Biallelic variants in inorganic pyrophosphatase 2 (PPA2) are known to cause infantile sudden cardiac failure (OMIM #617222), but relatively little is known about phenotypic variability of these patients prior to their death. We report a 5-wk-old male with bilateral vocal cord paralysis and hypertension who had a sudden unexpected cardiac death. Subsequently, molecular autopsy via whole-genome sequencing from newborn dried blood spot identified compound heterozygous mutations in PPA2, with a paternally inherited, pathogenic missense variant (c.514G > A; p.Glu172Lys) and a novel, maternally inherited missense variant of uncertain significance (c.442A > T; p.Thr148Ser). This report expands the presenting phenotype of patients with PPA2 variants. It also highlights the utility of dried blood spots for postmortem molecular diagnosis.


Assuntos
Morte Súbita Cardíaca/etiologia , Pirofosfatase Inorgânica/genética , Proteínas Mitocondriais/genética , Paralisia das Pregas Vocais/genética , Morte Súbita Cardíaca/patologia , Predisposição Genética para Doença/genética , Humanos , Lactente , Pirofosfatase Inorgânica/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Fenótipo , Pirofosfatases/genética , Paralisia das Pregas Vocais/complicações , Paralisia das Pregas Vocais/diagnóstico
12.
Int J Neonatal Screen ; 6(2)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32352041

RESUMO

Pompe disease (PD) is screened by a two tier newborn screening (NBS) algorithm, the first tier of which is an enzymatic assay performed on newborn dried blood spots (DBS). As first tier enzymatic screening tests have false positive results, an immediate second tier test on the same sample is critical in resolving newborn health status. Two methodologies have been proposed for second tier testing: (a) measurement of enzymatic activities such as of Creatine/Creatinine over alpha-glucosidase ratio, and (b) DNA sequencing (a molecular genetics approach), such as targeted next generation sequencing. (tNGS). In this review, we discuss the tNGS approach, as well as the challenges in providing second tier screening and follow-up care. While tNGS can predict genotype-phenotype effects when known, these advantages may be diminished when the variants are novel, of unknown significance or not discoverable by current test methodologies. Due to the fact that criticisms of screening algorithms that utilize tNGS are based on perceived complexities, including variant detection and interpretation, we clarify the actual limitations and present the rationale that supports optimizing a molecular genetic testing approach with tNGS. Second tier tNGS can benefit clinical decision-making through the use of the initial NBS DBS punch and rapid turn-around time methodology for tNGS, that includes copy number variant analysis, variant effect prediction, and variant 'cut-off' tools for the reduction of false positive results. The availability of DNA sequence data will contribute to the improved understanding of genotype-phenotype associations and application of treatment. The ultimate goal of second tier testing should enable the earliest possible diagnosis for the earliest initiation of the most effective clinical interventions in infants with PD.

13.
Hum Genet ; 139(5): 569-574, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32056000

RESUMO

Extremely rare diseases are increasingly recognized due to wide-spread, inexpensive genomic sequencing. Understanding the incidence of rare disease is important for appreciating its health impact and allocating recourses for research. However, estimating incidence of rare disease is challenging because the individual contributory alleles are, themselves, extremely rare. We propose a new method to determine incidence of rare, severe, recessive disease in non-consanguineous populations that use known allele frequencies, estimate the combined allele frequency of observed alleles and estimate the number of causative alleles that are thus far unobserved in a disease cohort. Experiments on simulated and real data show that this approach is a feasible method to estimate the incidence of rare disease in European populations but due to several limitations in our ability to assess the full spectrum of pathogenic mutations serves as a useful tool to provide a lower threshold on disease incidence.


Assuntos
Genes Recessivos , Predisposição Genética para Doença , Mutação , Polimorfismo de Nucleotídeo Único , Doenças Raras/epidemiologia , Doenças Raras/genética , Estudos de Coortes , Frequência do Gene , Humanos , Incidência , Modelos Genéticos , Estados Unidos/epidemiologia
14.
J Med Genet ; 57(10): 664-670, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31937561

RESUMO

BACKGROUND: The shelterin complex is composed of six proteins that protect and regulate telomere length, including protection of telomeres 1 (POT1). Germline POT1 mutations are associated with an autosomal dominant familial cancer syndrome presenting with diverse malignancies, including glioma, angiosarcoma, colorectal cancer and melanoma. Although somatic POT1 mutations promote telomere elongation and genome instability in chronic lymphocytic leukaemia, the contribution of POT1 mutations to development of other sporadic cancers is largely unexplored. METHODS: We performed logistic regression, adjusted for tumour mutational burden, to identify associations between POT1 mutation frequency and tumour type in 62 368 tumours undergoing next-generation sequencing. RESULTS: A total of 1834 tumours harboured a non-benign mutation of POT1 (2.94%), of which 128 harboured a mutation previously reported to confer familial cancer risk in the setting of germline POT1 deficiency. Angiosarcoma was 11 times more likely than other tumours to harbour a POT1 mutation (p=1.4×10-20), and 65% of POT1-mutated angiosarcoma had >1 mutations in POT1. Malignant gliomas were 1.7 times less likely to harbour a POT1 mutation (p=1.2×10-3) than other tumour types. Colorectal cancer was 1.2 times less likely to harbour a POT1 mutation (p=0.012), while melanoma showed no differences in POT1 mutation frequency versus other tumours (p=0.67). CONCLUSIONS: These results confirm a role for shelterin dysfunction in angiosarcoma development but suggest that gliomas arising in the context of germline POT1 deficiency activate a telomere-lengthening mechanism that is uncommon in gliomagenesis.


Assuntos
Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Adulto , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Mutação em Linhagem Germinativa/genética , Glioma/genética , Glioma/patologia , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/patologia , Complexo Shelterina
15.
Hum Mol Genet ; 29(3): 459-470, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943016

RESUMO

Autism spectrum disorders are associated with some degree of developmental regression in up to 30% of all cases. Rarely, however, is the regression so extreme that a developmentally advanced young child would lose almost all ability to communicate and interact with her surroundings. We applied trio whole exome sequencing to a young woman who experienced extreme developmental regression starting at 2.5 years of age and identified compound heterozygous nonsense mutations in TMPRSS9, which encodes for polyserase-1, a transmembrane serine protease of poorly understood physiological function. Using semiquantitative polymerase chain reaction, we showed that Tmprss9 is expressed in various mouse tissues, including the brain. To study the consequences of TMPRSS9 loss of function on the mammalian brain, we generated a knockout mouse model. Through a battery of behavioral assays, we found that Tmprss9-/- mice showed decreased social interest and social recognition. We observed a borderline recognition memory deficit by novel object recognition in aged Tmprss9-/- female mice, but not in aged Tmprss9-/- male mice or younger adult Tmprss9-/- mice in both sexes. This study provides evidence to suggest that loss of function variants in TMPRSS9 are related to an autism spectrum disorder. However, the identification of more individuals with similar phenotypes and TMPRSS9 loss of function variants is required to establish a robust gene-disease relationship.


Assuntos
Transtornos de Ansiedade/patologia , Transtorno do Espectro Autista/patologia , Códon sem Sentido , Sequenciamento do Exoma/métodos , Proteínas de Membrana/metabolismo , Transtornos da Memória/patologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/fisiologia , Adolescente , Adulto , Animais , Transtornos de Ansiedade/etiologia , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Transtornos da Memória/etiologia , Camundongos , Camundongos Knockout , Atividade Motora , Fenótipo , Serina Endopeptidases/genética
17.
Am J Hum Genet ; 105(4): 719-733, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564432

RESUMO

The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology. 213 infants (37% of those eligible) were enrolled within 96 h of admission. 24 infants (11%) were very ill and received ultra-rapid whole-genome sequencing (urWGS). The remaining infants were randomized, 95 to rWES and 94 to rWGS. The analytic performance of rWGS was superior to rWES, including variants likely to affect protein function, and ClinVar pathogenic/likely pathogenic variants (p < 0.0001). The diagnostic performance of rWGS and rWES were similar (18 diagnoses in 94 infants [19%] versus 19 diagnoses in 95 infants [20%], respectively), as was time to result (median 11.0 versus 11.2 days, respectively). However, the proportion diagnosed by urWGS (11 of 24 [46%]) was higher than rWES/rWGS (p = 0.004) and time to result was less (median 4.6 days, p < 0.0001). The incremental diagnostic yield of reflexing to trio after negative proband analysis was 0.7% (1 of 147). In conclusion, rapid genomic sequencing can be performed as a first-tier diagnostic test in inpatient infants. urWGS had the shortest time to result, which was important in unstable infants, and those in whom a genetic diagnosis was likely to impact immediate management. Further comparison of urWGS and rWES is warranted because genomic technologies and knowledge of variant pathogenicity are evolving rapidly.


Assuntos
Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Testes Genéticos , Humanos , Lactente , Recém-Nascido
18.
Genet Med ; 21(12): 2755-2764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31263215

RESUMO

PURPOSE: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS: Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION: Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.


Assuntos
Deficiência Intelectual/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Bases de Dados Genéticas , Modelos Animais de Doenças , Exoma/genética , Feminino , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/complicações , Rim/anormalidades , Rim/embriologia , Masculino , Néfrons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sistema Urinário/embriologia , Sistema Urinário/metabolismo , Sequenciamento do Exoma/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto Jovem , Quinases Dyrk
19.
Pediatr Crit Care Med ; 20(11): 1007-1020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246743

RESUMO

OBJECTIVES: Genetic disorders are a leading contributor to mortality in the neonatal ICU and PICU in the United States. Although individually rare, there are over 6,200 single-gene diseases, which may preclude a genetic diagnosis prior to ICU admission. Rapid whole genome sequencing is an emerging method of diagnosing genetic conditions in time to affect ICU management of neonates; however, its clinical utility has yet to be adequately demonstrated in critically ill children. This study evaluates next-generation sequencing in pediatric critical care. DESIGN: Retrospective cohort study. SETTING: Single-center PICU in a tertiary children's hospital. PATIENTS: Children 4 months to 18 years admitted to the PICU who were nominated between July 2016 and May 2018. INTERVENTIONS: Rapid whole genome sequencing with targeted phenotype-driven analysis was performed on patients and their parents, when parental samples were available. MEASUREMENTS AND MAIN RESULTS: A molecular diagnosis was made by rapid whole genome sequencing in 17 of 38 children (45%). In four of the 17 patients (24%), the genetic diagnoses led to a change in management while in the PICU, including genome-informed changes in pharmacotherapy and transition to palliative care. Nine of the 17 diagnosed children (53%) had no dysmorphic features or developmental delay. Eighty-two percent of diagnoses affected the clinical management of the patient and/or family after PICU discharge, including avoidance of biopsy, administration of factor replacement, and surveillance for disorder-related sequelae. CONCLUSIONS: This study demonstrates a retrospective evaluation for undiagnosed genetic disease in the PICU and clinical utility of rapid whole genome sequencing in a portion of critically ill children. Further studies are needed to identify PICU patients who will benefit from rapid whole genome sequencing early in PICU admission when the underlying etiology is unclear.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento Completo do Genoma , Adolescente , Criança , Pré-Escolar , Estado Terminal/terapia , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Masculino , Medicina de Precisão/métodos , Estudos Retrospectivos
20.
Sci Transl Med ; 11(489)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019026

RESUMO

By informing timely targeted treatments, rapid whole-genome sequencing can improve the outcomes of seriously ill children with genetic diseases, particularly infants in neonatal and pediatric intensive care units (ICUs). The need for highly qualified professionals to decipher results, however, precludes widespread implementation. We describe a platform for population-scale, provisional diagnosis of genetic diseases with automated phenotyping and interpretation. Genome sequencing was expedited by bead-based genome library preparation directly from blood samples and sequencing of paired 100-nt reads in 15.5 hours. Clinical natural language processing (CNLP) automatically extracted children's deep phenomes from electronic health records with 80% precision and 93% recall. In 101 children with 105 genetic diseases, a mean of 4.3 CNLP-extracted phenotypic features matched the expected phenotypic features of those diseases, compared with a match of 0.9 phenotypic features used in manual interpretation. We automated provisional diagnosis by combining the ranking of the similarity of a patient's CNLP phenome with respect to the expected phenotypic features of all genetic diseases, together with the ranking of the pathogenicity of all of the patient's genomic variants. Automated, retrospective diagnoses concurred well with expert manual interpretation (97% recall and 99% precision in 95 children with 97 genetic diseases). Prospectively, our platform correctly diagnosed three of seven seriously ill ICU infants (100% precision and recall) with a mean time saving of 22:19 hours. In each case, the diagnosis affected treatment. Genome sequencing with automated phenotyping and interpretation in a median of 20:10 hours may increase adoption in ICUs and, thereby, timely implementation of precise treatments.


Assuntos
Cetoacidose Diabética/genética , Genômica/métodos , Registros Eletrônicos de Saúde , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Processamento de Linguagem Natural , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA