Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hemasphere ; 8(3): e56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486859

RESUMO

Breakpoint cluster region-Abelson (BCR::ABL1) gene fusion is an essential oncogene in both chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL). While tyrosine kinase inhibitors (TKIs) are effective in up to 95% of CML patients, 50% of Ph+ B-ALL cases do not respond to treatment or relapse. This calls for new therapeutic approaches for Ph+ B-ALL. Previous studies have shown that inhibitors of the thioredoxin (TXN) system exert antileukemic activity against B-ALL cells, particularly in combination with other drugs. Here, we present that peroxiredoxin-1 (PRDX1), one of the enzymes of the TXN system, is upregulated in Ph+ lymphoid as compared to Ph+ myeloid cells. PRDX1 knockout negatively affects the viability of Ph+ B-ALL cells and sensitizes them to TKIs. Analysis of global gene expression changes in imatinib-treated, PRDX1-deficient cells revealed that the nonhomologous end-joining (NHEJ) DNA repair is a novel vulnerability of Ph+ B-ALL cells. Accordingly, PRDX1-deficient Ph+ B-ALL cells were susceptible to NHEJ inhibitors. Finally, we demonstrated the potent efficacy of a novel combination of TKIs, TXN inhibitors, and NHEJ inhibitors against Ph+ B-ALL cell lines and primary cells, which can be further investigated as a potential therapeutic approach for the treatment of Ph+ B-ALL.

2.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078921

RESUMO

BACKGROUND: Immune checkpoint inhibitors and chimeric antigen receptor (CAR)-based therapies have transformed cancer treatment. Recently, combining these approaches into a strategy of PD-L1-targeted CAR has been proposed to target PD-L1high tumors. Our study provides new information on the efficacy of such an approach against PD-L1low targets. METHODS: New atezolizumab-based PD-L1-targeted CAR was generated and introduced into T, NK, or NK-92 cells. Breast cancer MDA-MB-231 and MCF-7 cell lines or non-malignant cells (HEK293T, HMEC, MCF-10A, or BM-MSC) were used as targets to assess the reactivity or cytotoxic activity of the PD-L1-CAR-bearing immune effector cells. Stimulation with IFNγ or with supernatants from activated CAR T cells were used to induce upregulation of PD-L1 molecule expression on the target cells. HER2-CAR T cells were used for combination with PD-L1-CAR T cells against MCF-7 cells. RESULTS: PD-L1-CAR effector cells responded vigorously with degranulation and cytokine production to PD-L1high MDA-MB-231 cells, but not to PD-L1low MCF-7 cells. However, in long-term killing assays, both MDA-MB-231 and MCF-7 cells were eliminated by the PD-L1-CAR cells, although with a delay in the case of PD-L1low MCF-7 cells. Notably, the coculture of MCF-7 cells with activated PD-L1-CAR cells led to bystander induction of PD-L1 expression on MCF-7 cells and to the unique self-amplifying effect of the PD-L1-CAR cells. Accordingly, PD-L1-CAR T cells were active not only against MDA-MD-231 and MCF-7-PD-L1 but also against MCF-7-pLVX cells in tumor xenograft models. Importantly, we have also observed potent cytotoxic effects of PD-L1-CAR cells against non-malignant MCF-10A, HMEC, and BM-MSC cells, but not against HEK293T cells that initially did not express PD-L1 and were unresponsive to the stimulation . Finally, we have observed that HER-2-CAR T cells stimulate PD-L1 expression on MCF-7 cells and therefore accelerate the functionality of PD-L1-CAR T cells when used in combination. CONCLUSIONS: In summary, our studies show that CAR-effector cells trigger the expression of PD-L1 on target cells, which in case of PD-L1-CAR results in the unique self-amplification phenomenon. This self-amplifying effect could be responsible for the enhanced cytotoxicity of PD-L1-CAR T cells against both malignant and non-malignant cells and implies extensive caution in introducing PD-L1-CAR strategy into clinical studies.


Assuntos
Neoplasias da Mama/terapia , Citotoxicidade Imunológica , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígeno B7-H1/análise , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos , Receptor ErbB-2/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Immunol Res ; 10(2): 228-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853030

RESUMO

Oxidative stress, caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses, is one of the characteristic features of cancer. Here, we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo, when compared with blood or normal subcutaneous fluid. Therefore, we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells, and by comparing T, B, and NK cells' sensitivities to redox stress and their antioxidant capacities, we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However, the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore, we genetically modified NK cells to stably overexpress PRDX1, which led to increased survival and NK cell activity in redox stress conditions. Finally, we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide, at concentrations detected in the TME, suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors.


Assuntos
Antioxidantes , Neoplasias da Mama , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Feminino , Peróxido de Hidrogênio/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais , Camundongos , Estresse Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Microambiente Tumoral
4.
Cancers (Basel) ; 13(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885122

RESUMO

Breast cancer (BC) has traditionally been considered to be not inherently immunogenic and insufficiently represented by immune cell infiltrates. Therefore, for a long time, it was thought that the immunotherapies targeting this type of cancer and its microenvironment were not justified and would not bring benefits for breast cancer patients. Nevertheless, to date, a considerable number of reports have indicated tumor-infiltrating lymphocytes (TILs) as a prognostic and clinically relevant biomarker in breast cancer. A high TILs expression has been demonstrated in primary tumors, of both, HER2-positive BC and triple-negative (TNBC), of patients before treatment, as well as after treatment with adjuvant and neoadjuvant chemotherapy. Another milestone was reached in advanced TNBC immunotherapy with the help of the immune checkpoint inhibitors directed against the PD-L1 molecule. Although those findings, together with the recent developments in chimeric antigen receptor T cell therapies, show immense promise for significant advancements in breast cancer treatments, there are still various obstacles to the optimal activity of immunotherapeutics in BC treatment. Of these, the immunosuppressive tumor microenvironment constitutes a key barrier that greatly hinders the success of immunotherapies in the most aggressive types of breast cancer, HER2-positive and TNBC. Therefore, the improvement of the current and the demand for the development of new immunotherapeutic strategies is strongly warranted.

5.
Antioxidants (Basel) ; 9(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316111

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of mammary malignancy currently without satisfactory systemic treatment options. Agents generating reactive oxygen species (ROS), such as ascorbate (Asc) and menadione (Men), especially applied in combination, have been proposed as an alternative anticancer modality. However, their effectiveness can be hampered by the cytoprotective effects of elevated antioxidant enzymes (e.g., peroxiredoxins, PRDX) in cancer. In this study, PRDX1 mRNA and protein expression were assessed in TNBC tissues by analysis of the online RNA-seq datasets and immunohistochemical staining of tissue microarray, respectively. We demonstrated that PRDX1 mRNA expression was markedly elevated in primary TNBC tumors as compared to non-malignant controls, with PRDX1 protein staining intensity correlating with favorable survival parameters. Subsequently, PRDX1 functionality in TNBC cell lines or non-malignant mammary cells was targeted by genetic silencing or chemically by auranofin (AUR). The PRDX1-knockdown or AUR treatment resulted in inhibition of the growth of TNBC cells in vitro. These cytotoxic effects were further synergistically potentiated by the incubation with a combination of the prooxidant agents, Asc and Men. In conclusion, we report that the PRDX1-related antioxidant system is essential for maintaining redox homeostasis in TNBC cells and can be an attractive therapeutic target in combination with ROS-generating agents.

6.
Cancer Lett ; 471: 1-11, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31811907

RESUMO

Deregulated metabolism of oxygen with increased generation of reactive oxygen species (ROS) is characteristic for a majority of cancers. The elevated ROS levels are in part responsible for further progression of cancer, but when produced in large excess, they endanger the viability of the cancer cells. To protect themselves from ROS-mediated toxicity, many types of cancers enhance the intrinsic antioxidant defenses, which make them dependent on the efficacy of a given ROS-detoxifying system. This poses an attractive target for anticancer therapy by two main approaches: the use of ROS-generating agents (i.e., prooxidants) or by inhibition of a chosen antioxidant system. However, the clinical efficacy of either of these approaches used alone is modest at best. The solution may rely on combining these strategies into an advanced prooxidant therapy (APoT) in order to produce a synergistic and cancer-specific effect. Indeed, such strategies have proven efficient in preclinical models, e.g., in B cell malignancies and breast cancer. Following promising experimental reports on APoT, this approach needs to be further extensively tested in order to become a potential alternative or an enhancement for classical chemotherapy.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxidantes/farmacologia , Animais , Antioxidantes/metabolismo , Humanos , Oxidantes/uso terapêutico , Oxirredução , Ensaios Clínicos Controlados Aleatórios como Assunto , Espécies Reativas de Oxigênio/metabolismo
7.
Cancers (Basel) ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717326

RESUMO

The immune checkpoints are regulatory molecules that maintain immune homeostasis in physiological conditions. By sending T cells a series of co-stimulatory or co-inhibitory signals via receptors, immune checkpoints can both protect healthy tissues from adaptive immune response and activate lymphocytes to remove pathogens effectively. However, due to their mode of action, suppressive immune checkpoints may serve as unwanted protection for cancer cells. To restore the functioning of the immune system and make the patient's immune cells able to recognize and destroy tumors, monoclonal antibodies are broadly used in cancer immunotherapy to block the suppressive or to stimulate the positive immune checkpoints. In this review, we aim to present the current state of application of monoclonal antibodies in clinics, used either as single agents or in a combined treatment. We discuss the limitations of these therapies and possible problem-solving with combined treatment approaches involving both non-biological and biological agents. We also highlight the most promising strategies based on the use of monoclonal or bispecific antibodies targeted on immune checkpoints other than currently implemented in clinics.

8.
Redox Biol ; 21: 101062, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576925

RESUMO

L-ascorbate (L-ASC) is a widely-known dietary nutrient which holds promising potential in cancer therapy when given parenterally at high doses. The anticancer effects of L-ASC involve its autoxidation and generation of H2O2, which is selectively toxic to malignant cells. Here we present that thioredoxin antioxidant system plays a key role in the scavenging of extracellularly-generated H2O2 in malignant B-cells. We show that inhibition of peroxiredoxin 1, the enzyme that removes H2O2 in a thioredoxin system-dependent manner, increases the sensitivity of malignant B-cells to L-ASC. Moreover, we demonstrate that auranofin (AUR), the inhibitor of the thioredoxin system that is used as an antirheumatic drug, diminishes the H2O2-scavenging capacity of malignant B-cells and potentiates pharmacological ascorbate anticancer activity in vitro and in vivo. The addition of AUR to L-ASC-treated cells triggers the accumulation of H2O2 in the cells, which results in iron-dependent cytotoxicity. Importantly, the synergistic effects are observed at as low as 200 µM L-ASC concentrations. In conclusion, we observed strong, synergistic, cancer-selective interaction between L-ASC and auranofin. Since both of these agents are available in clinical practice, our findings support further investigations of the efficacy of pharmacological ascorbate in combination with auranofin in preclinical and clinical settings.


Assuntos
Ácido Ascórbico/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Tiorredoxinas/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Ferro/metabolismo , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/patologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Br J Cancer ; 119(7): 873-884, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30287919

RESUMO

BACKGROUND: Our previous work has shown peroxiredoxin-1 (PRDX1), one of major antioxidant enzymes, to be a biomarker in human breast cancer. Hereby, we further investigate the role of PRDX1, compared to its close homolog PRDX2, in mammary malignant cells. METHODS: CRISPR/Cas9- or RNAi-based methods were used for genetic targeting PRDX1/2. Cell growth was assessed by crystal violet, EdU incorporation or colony formation assays. In vivo growth was assessed by a xenotransplantation model. Adenanthin was used to inhibit the thioredoxin-dependent antioxidant defense system. The prooxidant agents used were hydrogen peroxide, glucose oxidase and sodium L-ascorbate. A PY1 probe or HyPer-3 biosensor were used to detect hydrogen peroxide content in samples. RESULTS: PRDX1 downregulation significantly impaired the growth rate of MCF-7 and ZR-75-1 breast cancer cells. Likewise, xenotransplanted PRDX1-deficient MCF-7 cells presented a retarded tumour growth. Furthermore, genetic targeting of PRDX1 or adenanthin, but not PRDX2, potently sensitised all six cancer cell lines studied, but not the non-cancerous cells, to glucose oxidase and ascorbate. CONCLUSIONS: Our study pinpoints the dominant role for PRDX1 in management of exogeneous oxidative stress by breast cancer cells and substantiates further exploration of PRDX1 as a target in this disease, especially when combined with prooxidant agents.


Assuntos
Antioxidantes/administração & dosagem , Neoplasias da Mama/terapia , Diterpenos do Tipo Caurano/administração & dosagem , Técnicas de Silenciamento de Genes/métodos , Peroxirredoxinas/genética , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Feminino , Glucose Oxidase/administração & dosagem , Glucose Oxidase/farmacologia , Humanos , Células MCF-7 , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Haematologica ; 103(11): 1843-1852, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30002127

RESUMO

A cute myeloid leukemia is a malignant disease of immature myeloid cells. Despite significant therapeutic effects of differentiation-inducing agents in some acute myeloid leukemia subtypes, the disease remains incurable in a large fraction of patients. Here we show that SK053, a thioredoxin inhibitor, induces differentiation and cell death of acute myeloid leukemia cells. Considering that thioredoxin knock-down with short hairpin RNA failed to exert antiproliferative effects in one of the acute myeloid leukemia cell lines, we used a biotin affinity probe-labeling approach to identify potential molecular targets for the effects of SK053. Mass spectrometry of proteins precipitated from acute myeloid leukemia cells incubated with biotinylated SK053 used as a bait revealed protein disulfide isomerase as a potential binding partner for the compound. Biochemical, enzymatic and functional assays using fluorescence lifetime imaging confirmed that SK053 binds to and inhibits the activity of protein disulfide isomerase. Protein disulfide isomerase knockdown with short hairpin RNA was associated with inhibition of cell growth, increased CCAAT enhancer-binding protein α levels, and induction of differentiation of HL-60 cells. Molecular dynamics simulation followed by the covalent docking indicated that SK053 binds to the fourth thioredoxin-like domain of protein disulfide isomerase. Differentiation of myeloid precursor cells requires the activity of CCAAT enhancer-binding protein α, the function of which is impaired in acute myeloid leukemia cells through various mechanisms, including translational block by protein disulfide isomerase. SK053 increased the levels of CCAAT enhancer-binding protein α and upregulated mRNA levels for differentiation-associated genes. Finally, SK053 decreased the survival of blasts and increased the percentage of cells expressing the maturation-associated CD11b marker in primary cells isolated from bone marrow or peripheral blood of patients with acute myeloid leukemia. Collectively, these results provide a proof-of-concept that protein disulfide isomerase inhibition has potential as a therapeutic strategy for the treatment of acute myeloid leukemia and for the development of small-molecule inhibitors of protein disulfide isomerase.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Metacrilatos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo
11.
Cancer Immunol Res ; 6(4): 467-480, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459477

RESUMO

Natural killer (NK) cells hold potential as a source of allogeneic cytotoxic effector cells for chimeric antigen receptor (CAR)-mediated therapies. Here, we explored the feasibility of transfecting CAR-encoding mRNA into primary NK cells and investigated how the intrinsic potential of discrete NK-cell subsets affects retargeting efficiency. After screening five second- and third-generation anti-CD19 CAR constructs with different signaling domains and spacer regions, a third-generation CAR with the CH2-domain removed was selected based on its expression and functional profiles. Kinetics experiments revealed that CAR expression was optimal after 3 days of IL15 stimulation prior to transfection, consistently achieving over 80% expression. CAR-engineered NK cells acquired increased degranulation toward CD19+ targets, and maintained their intrinsic degranulation response toward CD19- K562 cells. The response of redirected NK-cell subsets against CD19+ targets was dependent on their intrinsic thresholds for activation determined through both differentiation and education by killer cell immunoglobulin-like receptors (KIR) and/or CD94/NKG2A binding to self HLA class I and HLA-E, respectively. Redirected primary NK cells were insensitive to inhibition through NKG2A/HLA-E interactions but remained sensitive to inhibition through KIR depending on the amount of HLA class I expressed on target cells. Adaptive NK cells, expressing NKG2C, CD57, and self-HLA-specific KIR(s), displayed superior ability to kill CD19+, HLA low, or mismatched tumor cells. These findings support the feasibility of primary allogeneic NK cells for CAR engineering and highlight a need to consider NK-cell diversity when optimizing efficacy of cancer immunotherapies based on CAR-expressing NK cells. Cancer Immunol Res; 6(4); 467-80. ©2018 AACR.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Eletroporação , Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores KIR/antagonistas & inibidores
12.
Arch Immunol Ther Exp (Warsz) ; 66(4): 289-298, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29344676

RESUMO

The idea of using the effector immune cells to specifically fight cancer has recently evolved into an exciting concept of adoptive cell therapies. Indeed, genetically engineered T cells expressing on their surface recombinant, cancer-targeted receptors have been shown to induce promising response in oncological patients. However, in addition to exogenous expression of such receptors, there is also a need for disruption of certain genes in the immune cells to achieve more potent disease-targeted actions, to produce universal chimeric antigen receptor-based therapies or to study the signaling pathways in detail. In this review, we present novel genetic engineering methods, mainly TALEN and CRISPR/Cas9 systems, that can be used for such purposes. These unique techniques may contribute to creating more successful immune therapies against cancer or prospectively other diseases as well.


Assuntos
Edição de Genes/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/fisiologia , Neoplasias/imunologia , Linfócitos T/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citotoxicidade Imunológica , Engenharia Genética , Humanos , Técnicas Imunológicas , Células Matadoras Naturais/transplante , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/transplante
13.
PLoS One ; 11(5): e0154822, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27159591

RESUMO

Mammalian S100B protein plays multiple important roles in cellular brain processes. The protein is a clinically used marker for several pathologies including brain injury, neurodegeneration and cancer. High levels of S100B released by astrocytes in Down syndrome patients are responsible for reduced neurogenesis of neural progenitor cells and induction of cell death in neurons. Despite increasing understanding of S100B biology, there are still many questions concerning the detailed molecular mechanisms that determine specific activities of S100B. Elevated overexpression of S100B protein is often synchronized with increased nitric oxide-related activity. In this work we show S100B is a target of exogenous S-nitrosylation in rat brain protein lysate and identify endogenous S-nitrosylation of S100B in a cellular model of astrocytes. Biochemical studies are presented indicating S-nitrosylation tunes the conformation of S100B and modulates its Ca2+ and Zn2+ binding properties. Our in vitro results suggest that the possibility of endogenous S-nitrosylation should be taken into account in the further studies of in vivo S100B protein activity, especially under conditions of increased NO-related activity.


Assuntos
Astrócitos/metabolismo , Metais/metabolismo , Compostos Nitrosos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sequência de Aminoácidos , Animais , Calorimetria , Linhagem Celular Tumoral , Masculino , Espectrometria de Massas , Concentração Osmolar , Ligação Proteica , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/química , Homologia de Sequência de Aminoácidos
14.
Oncotarget ; 7(2): 1717-31, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26636537

RESUMO

Burkitt lymphoma is a fast-growing tumor derived from germinal center B cells. It is mainly treated with aggressive chemotherapy, therefore novel therapeutic approaches are needed due to treatment toxicity and developing resistance. Disturbance of red-ox homeostasis has recently emerged as an efficient antitumor strategy. Peroxiredoxins (PRDXs) are thioredoxin-family antioxidant enzymes that scavenge cellular peroxides and contribute to red-ox homeostasis. PRDXs are robustly expressed in various malignancies and critically involved in cell proliferation, differentiation and apoptosis. To elucidate potential role of PRDXs in lymphoma, we studied their expression level in B cell-derived primary lymphoma cells as well as in cell lines. We found that PRDX1 and PRDX2 are upregulated in tumor B cells as compared with normal counterparts. Concomitant knockdown of PRDX1 and PRDX2 significantly attenuated the growth rate of lymphoma cells. Furthermore, in human Burkitt lymphoma cell lines, we isolated dimeric 2-cysteine peroxiredoxins as targets for SK053, a novel thiol-specific small-molecule peptidomimetic with antitumor activity. We observed that treatment of lymphoma cells with SK053 triggers formation of covalent PRDX dimers, accumulation of intracellular reactive oxygen species, phosphorylation of ERK1/2 and AKT and leads to cell cycle arrest and apoptosis. Based on site-directed mutagenesis and modeling studies, we propose a mechanism of SK053-mediated PRDX crosslinking, involving double thioalkylation of active site cysteine residues. Altogether, our results suggest that peroxiredoxins are novel therapeutic targets in Burkitt lymphoma and provide the basis for new approaches to the treatment of this disease.


Assuntos
Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Cisteína/química , Cisteína/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Metacrilatos/química , Metacrilatos/metabolismo , Metacrilatos/farmacologia , Modelos Moleculares , Estrutura Molecular , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/química , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
15.
Immunology ; 146(1): 173-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094816

RESUMO

Natural killer (NK) cells are considered critical components of the innate and adaptive immune responses. Deficiencies in NK cell activity are common, such as those that occur in cancer patients, and they can be responsible for dysfunctional immune surveillance. Persistent oxidative stress is intrinsic to many malignant tumours, and numerous studies have focused on the effects of reactive oxygen species on the anti-tumour activity of NK cells. Indeed, investigations in animal models have suggested that one of the most important thiol-dependent antioxidant enzymes, peroxiredoxin 1 (PRDX1), is essential for NK cell function. In this work, our analysis of the transcriptomic expression pattern of antioxidant enzymes in human NK cells has identified PRDX1 as the most prominently induced transcript out of the 18 transcripts evaluated in activated NK cells. The change in PRDX1 expression was followed by increased expression of two other enzymes from the PRDX-related antioxidant chain: thioredoxin and thioredoxin reductase. To study the role of thiol-dependent antioxidants in more detail, we applied a novel compound, adenanthin, to induce an abrupt dysfunction of the PRDX-related antioxidant chain in NK cells. In human primary NK cells, we observed profound alterations in spontaneous and antibody-dependent NK cell cytotoxicity against cancer cells, impaired degranulation, and a decreased expression of activation markers under these conditions. Collectively, our study pinpoints the unique role for the antioxidant activity of the PRDX-related enzymatic chain in human NK cell functions. Further understanding this phenomenon will prospectively lead to fine-tuning of the novel NK-targeted therapeutic approaches to human disease.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Inibidores Enzimáticos/farmacologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Peroxirredoxinas/antagonistas & inibidores , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antioxidantes , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Glutationa/análise , Humanos , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/biossíntese , Tiorredoxinas/biossíntese
16.
Breast Cancer Res ; 16(4): R79, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25011585

RESUMO

INTRODUCTION: Peroxiredoxin-1 (PRDX1) is a multifunctional protein, acting as a hydrogen peroxide (H2O2) scavenger, molecular chaperone and immune modulator. Although differential PRDX1 expression has been described in many tumors, the potential role of PRDX1 in breast cancer remains highly ambiguous. Using a comprehensive antibody-based proteomics approach, we interrogated PRDX1 protein as a putative biomarker in estrogen receptor (ER)-positive breast cancer. METHODS: An anti-PRDX1 antibody was validated in breast cancer cell lines using immunoblotting, immunohistochemistry and reverse phase protein array (RPPA) technology. PRDX1 protein expression was evaluated in two independent breast cancer cohorts, represented on a screening RPPA (n = 712) and a validation tissue microarray (n = 498). In vitro assays were performed exploring the functional contribution of PRDX1, with oxidative stress conditions mimicked via treatment with H2O2, peroxynitrite, or adenanthin, a PRDX1/2 inhibitor. RESULTS: In ER-positive cases, high PRDX1 protein expression is a biomarker of improved prognosis across both cohorts. In the validation cohort, high PRDX1 expression was an independent predictor of improved relapse-free survival (hazard ratio (HR) = 0.62, 95% confidence interval (CI) = 0.40 to 0.96, P = 0.032), breast cancer-specific survival (HR = 0.44, 95% CI = 0.24 to 0.79, P = 0.006) and overall survival (HR = 0.61, 95% CI = 0.44 to 0.85, P = 0.004). RPPA screening of cancer signaling proteins showed that ERα protein was upregulated in PRDX1 high tumors. Exogenous H2O2 treatment decreased ERα protein levels in ER-positive cells. PRDX1 knockdown further sensitized cells to H2O2- and peroxynitrite-mediated effects, whilst PRDX1 overexpression protected against this response. Inhibition of PRDX1/2 antioxidant activity with adenanthin dramatically reduced ERα levels in breast cancer cells. CONCLUSIONS: PRDX1 is shown to be an independent predictor of improved outcomes in ER-positive breast cancer. Through its antioxidant function, PRDX1 may prevent oxidative stress-mediated ERα loss, thereby potentially contributing to maintenance of an ER-positive phenotype in mammary tumors. These results for the first time imply a close connection between biological activity of PRDX1 and regulation of estrogen-mediated signaling in breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Receptor alfa de Estrogênio/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica , Prognóstico , Transdução de Sinais
17.
Pol Arch Med Wewn ; 124(7-8): 380-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24938435

RESUMO

INTRODUCTION: IgA nephropathy (IgAN) is the most common primary glomerulonephritis. The first symptoms of IgAN are erytrocyturia or hematuria, proteinuria, and decline in renal function, or any combination of the above. One of the promising diagnostic methods is urine proteomics. OBJECTIVES: We studied urine proteomics in patients with IgAN and age- and sex­matched healthy controls. To minimize the risk of protein degradation, we proposed a new protocol for urine collection and preparation. PATIENTS AND METHODS: A total of 30 patients with IgAN and 30 controls were enrolled into the study. Thirty urine samples of the IgAN group were divided into 3 disease pooled samples (DPS I, II, and III) and 30 urine samples of the control group were divided into 3 control pooled samples (CPS I, II, and III). We used isoelectric focusing/liquid chromatography-mass spectrometry/mass spectrometry (IEF/LC­MS/MS) to detect all proteins larger than 10 kDa. RESULTS: Using qualitative analysis, we identified 761, 951, and 956 proteins in each of the 3 IEF/LC­MS/MS experiments. The results were combined, yielding a dataset with 1238 proteins identified by at least 2 peptides. The statistical analysis of the quantitative results revealed 18 proteins that were differently populated in the urine of IgAN patients compared with healthy controls. We found increased urinary concentrations of complement components, coagulation factors, extracellular matrix, intracellular, transmembrane, and other proteins in patients with IgAN. Some of them have never been linked to IgAN before. CONCLUSIONS: We demonstrated that urine proteomics is a promising tool for diagnosing and monitoring patients with IgAN.


Assuntos
Glomerulonefrite por IGA/urina , Fragmentos de Peptídeos/urina , Proteoma/metabolismo , Urinálise/métodos , Biomarcadores/urina , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino
18.
Hippocampus ; 23(6): 529-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23418057

RESUMO

Mechanisms of synaptic plasticity involve proteolytic activity mediated by a complex system of proteases, including members of metalloproteinase (MMP) family. In particular, MMP-9 is critical in LTP maintenance in the Schaffer collateral-CA1 pathway and in the acquisition of hippocampus-dependent memory. Recent studies from this laboratory revealed that in the mossy fiber-CA3 (MF-CA3) projection, where LTP induction and expression are largely presynaptic, MMPs blockade disrupts LTP maintenance and that LTP induction is associated with increased MMP-9 expression. Here we used acute brain slices from MMP-9 knock-out mice and transgenic rats overexpressing MMP-9 to determine how manipulations in endogenous MMP-9 affect LTP in the MF-CA3 projection. Both types of transgenic models showed a normal basal synaptic transmission and short-term plasticity. Interestingly, the maintenance of LTP induced in slices from knock-out mice and overexpressing rats was nearly abolished. However, in the presence of active MMP-9, a gradual fEPSP autopotentiation was observed and tetanization evoked a marked LTP in knock-out mice. Additionally, in MMP-9-treated slices from wild-type mice, fEPSP autopotentiation also occurred and partially occluded LTP. This indicates that exogenous protease can restore LTP in null mice whereas in the wild-type, MMP-9 excess impairs LTP. We expected that LTP maintenance in transgenic rats could be re-established by a partial MMP blockade but non-saturating concentrations of MMP inhibitor were ineffective. In conclusion, we demonstrate that LTP maintenance in MF-CA3 pathway requires fine-tuned MMP-9 activity and raises the possibility that altered MMP-9 level might be detrimental for cognitive processes as observed in some neuropathologies.


Assuntos
Região CA3 Hipocampal/enzimologia , Potenciação de Longa Duração/fisiologia , Metaloproteinase 9 da Matriz/biossíntese , Fibras Musgosas Hipocampais/enzimologia , Animais , Ativação Enzimática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/fisiologia , Técnicas de Cultura de Órgãos , Proteólise , Ratos , Ratos Transgênicos , Ratos Wistar
19.
Neurochem Res ; 38(6): 1113-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23124395

RESUMO

Cell adhesion molecules participate in the formation, maturation, function and plasticity of synaptic connections. The growing body of evidence indicates that in the regulation of the synaptic plasticity, in which these molecules play pivotal role, also the proteolytic processes are involved. This review focuses on extracellular proteolysis of the cell adhesion molecules by specific subgroup of the matrix metalloproteinases, a disintegrin and metalloproteases and a disintegrin and metalloproteinase with thrombospondin motifs, jointly referred to as metzincins, in driving coordinated synaptic structural and functional modifications underlying synaptic plasticity in the adult brain.


Assuntos
Proteínas ADAM/metabolismo , Moléculas de Adesão Celular/metabolismo , Metaloproteinases da Matriz/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Trombospondinas/metabolismo , Animais , Caderinas/metabolismo , Distroglicanas/metabolismo , Humanos , Imunoglobulinas/metabolismo , Nectinas , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteólise , Sindecanas/metabolismo
20.
J Neurochem ; 122(4): 775-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22694054

RESUMO

The elucidation of entire sets of protease substrates ("proteodegradomes") is important for understanding proteolytic pathways, their networks, and their role in the regulation of cell function. Matrix metalloproteinase-9 (MMP-9) is an extracellularly operating protease that is expressed and released in the brain in response to enhanced neuronal activity. Under physiological conditions, MMP-9 is involved in neuronal plasticity, including long-term potentiation, learning, and memory. This function may be related to its activity at the synapse. Under pathological conditions (e.g., during excitotoxicity, stroke, and traumatic brain injury), when the concentration of glutamate is persistently increased, MMP-9 is detrimental to brain tissue. To assess the MMP-9 degradome, we used synaptoneurosomal fractions isolated from the hippocampus of wildtype and MMP-9 knockout mice. To induce MMP-9 activity, the synaptoneurosomal fractions were treated with 50 µM glutamate for 30 min at 37°C. To investigate MMP-9 targets, two-dimensional fluorescence difference gel electrophoresis was performed. This approach enabled the accurate analysis of differences in protein abundance between samples. The differential spots that contained potential MMP-9 substrates were excised from the gel, and proteins of interest were identified using mass spectrometry. Two novel MMP-9 targets were identified: synaptic cell adhesion molecule-2 and collapsin response mediator protein-2. The MMP-9-driven processing of the newly identified substrates was confirmed by western blot in primary hippocampal neurons after stimulation with either N-methyl-D-aspartate or glutamate or incubation with recombinant autoactivating MMP-9 and use of a specific inhibitor.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Western Blotting , Células Cultivadas , Densitometria , Eletroforese em Gel Bidimensional , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Hipocampo/enzimologia , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/farmacologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/genética , Sinaptossomos/enzimologia , Sinaptossomos/ultraestrutura , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA