Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39336268

RESUMO

In this work, a laminate based on bioresin and natural fibers was produced. Flax fabric was selected as the natural fiber. The biocomposite was subjected to strength tests. Stress-strain characteristics and strength indicators were determined. The workability of the laminate produced was also tested using milling technology. The tests were carried out using five carbide shank cutters for different purposes. The cutters with the geometry used in the processing of polymer materials and composites, general purpose cutters, and cutters with the geometry for aluminum and with different numbers of blades were analyzed. In order to obtain information on the workability of the prepared material, machining tests with different configurations of technological parameters were carried out. For each cutter, the effect of cutting speed and feed rate on the quality of the machined surface was tested. Due to the small thickness of the laminate, the machining was carried out in one pass, as a result of which the cutting depth in each case was constant. Changes in cutting speed and feed were evenly distributed over five levels. The quality of machining was assessed in two stages. The first stage included a visual assessment of the machined surface, involving a preliminary qualification of the machining parameters. The criterion was the amount of chips, frays, burrs, etc., remaining after machining that adhered to the surface. The next stage was the measurement of the geometric structure of the surface, during which the roughness parameters were analyzed using an optical microscope with a roughness analysis attachment. Quantitative analysis was performed for the best quality composite surfaces from each measurement series. The studies showed a dependence of the quality of machining on the technological parameters used. High tool speed, regardless of the type, especially at low feed, led to the sticking of chips, which had a very delicate form. In turn, low tool speed and high feed, due to the chip thickness, favored the formation of burrs. Machining with different types of tools showed that the process progresses better for tools with sharp blade geometry. Machining with a regular and polished cutter did not show any differences in the scope of the process progress.

2.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930325

RESUMO

This study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties. The products tested for quality were dog bone specimens. The biocomposite was produced using a single-screw extruder, whereas molded pieces were made using an injection molding process. The Taguchi method was applied to optimize the injection molding parameters, which determine the products quality. Control factors were selected at three levels. The L27 orthogonal plan was used. For each set of input parameters from this plan, four processing tests were performed. The sample weight, shrinkage, elongation at break, tensile strength, and Young's modulus were selected to assess the quality of the molded parts. As a result of the research, the processing parameters of the tested biocomposite were determined, enabling the production of good-quality molded pieces. No common parameter configuration was found for different optimization criteria. Further research should focus on finding a different range of technological parameters. At the same time, it was found that the range of processing parameters of the produced biocomposite, especially processing temperature, made it possible to use it in the Wood Polymer Composites segment.

3.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730752

RESUMO

Surface preparation is an important step in adhesive technology. A variety of abrasive, chemical, or concentrated energy source treatments are used. The effects of these treatments vary due to the variety of factors affecting the final strength of bonded joints. This paper presents the results of an experimental study conducted to determine the feasibility of using fiber laser surface treatments in place of technologically and environmentally cumbersome methods. The effect of surface modification was studied on three materials: aluminum EN AW-1050A and aluminum alloys EN AW-2024 and EN AW-5083. For comparison purposes, joints were made with sandblasted and laser-textured surfaces and those rolled as reference samples for the selected overlap variant, glued with epoxy adhesive. The joints were made with an overlap of 8, 10, 12.5, 14, and 16 mm, and these tests made it possible to demonstrate laser processing as a useful technique to reduce the size of the overlap and achieve even higher load-bearing capacity of the joint compared to sandblasting. A comparative analysis was also carried out for the failure force of the adhesive bond and the failure energy. The results show the efficiency and desirability of using lasers in bonding, allowing us to reduce harmful technologies and reduce the weight of the bonded structure.

4.
Materials (Basel) ; 17(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673098

RESUMO

Fires constitute a significant threat due to the pollutants emitted and the destruction they cause. People who take part in firefighting operations must be equipped with appropriate tools, including special clothing that will allow them to work and guarantee safety. One of the threats is represented by compounds from the PAH (Polycyclic Aromatic Hydrocarbons) group, which are characterized by high toxicity and carcinogenicity. Therefore, it is important that the materials used constitute a barrier to contamination. Various materials from which individual elements of special firefighter's clothing are made were tested. Additionally, the effect of height on the possibility of sorption of PAH compounds on a given type of material was analyzed. Based on the obtained analysis results, it was found that both the type of material and the zone in which the clothing items are used are important in the sorption processes of pollutants. For example, PAHs with high molecular weight are most likely to settle on rubber, i.e., the material from which shoes are made, with the exception of Chrysene, whose presence was found primarily in aramid fibers, i.e., the material from which trousers and jackets are made. However, among PAHs with low molecular weight, compounds such as Methylnaphthalene,1- and Fluorene were sorbed on the rubber surface in large quantities. The only compound that is present in comparable amounts in all materials is Acenaphthylene. Data in this area may be important for taking further actions related to the modification of materials used in special fire brigade clothing and in their cleaning processes.

5.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203909

RESUMO

An important issue addressed in research on the assessment of the quality of polymer products is the quality of the polymer material itself and, in accordance with the idea of waste-free management, the impact of its repeated processing on its properties and the quality of the products. In this work, a biocomposite, based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with short hemp fibers, was obtained and repeatedly processed, which is a continuation of the research undertaken by the team in the field of this type of biocomposites. After subsequent stages of processing, the selected mechanical, processing and functional properties of the products were assessed. For this purpose, microscopic tests were carried out, mechanical properties were tested in static tensile and impact tests, viscosity curves were determined after subsequent processing cycles and changes in plastic pressure in the mold cavity were determined directly during processing. The results of the presented research confirm only a slight decrease in the mechanical properties of the produced type of biocomposite, even after it has been reprocessed five times, which gives extra weight to arguments for its commercialization as a substitute for petrochemical-based plastics. No significant changes were found in the used parameters and processing properties with the stages of processing, which allows for a predictable and stable manufacturing process using, for example, the injection molding process.

6.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559736

RESUMO

The paper presents a comparative analysis of two extrusion methods of biocomposites with a poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid) (PHBV) matrix filled with flax and hemp fibers in terms of biopolymer production, its processing in the further injection process, and an evaluation of the mechanical and functional properties of the products. Biocomposites containing 15% by weight of the filler were produced using single- and twin-screw extruders. The biocomposites were then processed by injection molding and then, among other things, the pressures in the mold cavity during processing were analyzed. The produced samples were tested by means of the following tests: uniaxial tensile strength, hardness, and impact tensile strength. The biocomposite's microstructure was also analyzed using scanning electron microscopy (SEM), as were the shrinkage and water absorption of the manufactured products. In addition, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed. It was found that the extrusion method changed significantly the geometry of the filler fibers and the processing capabilities of the manufactured materials. Significant differences in the mechanical and functional properties of the obtained biocomposite products were also found. On their basis, the advantages and disadvantages of both extrusion methods were discussed. Most of the obtained properties of injection products indicate the choice of single-screw extrusion. The products were characterized by slightly better mechanical properties and lower processing shrinkage. In turn, composites obtained by the screw method were characterized by lower water absorption and lower viscosity of the composite during injection molding.

7.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363123

RESUMO

This paper aims to experimentally determine the properties of the poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]-(PHBV)-30% hemp fiber biocomposite, which is important in terms of numerical simulations of product manufacturing, and to evaluate the mechanical properties by means of micromechanical modeling. The biocomposite was manufactured using a single-screw extruder. Specimens for testing were produced by applying the injection molding technology. Utilizing the simulation results of the plastic flow, carried out by the Moldflow Insight 2016 commercial software and the results of experimental tests, the forecasts of selected composite mechanical properties were performed by means of both numerical and analytical homogenization methods. For this purpose, the Digimat software was applied. The necessary experimental data to perform the calculations for the polymer matrix, fibers, and the biocomposite were obtained by rheological and thermal studies as well as elementary mechanical tests. In the paper, the method of determining selected properties of the biocomposite and the method of forecasting its other properties are discussed. It shows the dependence of the predicted, selected properties of the biocomposite on the filler geometry assumed in the calculations and the homogenization method adopted for the calculations. The results of the work allow for the prediction of properties of the PHBV biocomposites-hemp fiber for any amount of filler used. Moreover, the results allow for the estimation of the usefulness of homogenization methods for the prediction of properties of the PHBV-hemp fiber biocomposites. Furthermore, it was found that for the developed and tested biocomposites, the most effective possibility of mechanical properties prediction is using the Mori-Tanaka homogenization model, which unfortunately has some limitations.

8.
Polymers (Basel) ; 13(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198616

RESUMO

This study assessed the impact of alkali treatment of hemp and flax fibers on mechanical properties (determined by means of the uniaxial tensile test, impact tensile strength test and hardness test), processing properties (the course of the extrusion and injection process) and usable properties (shrinkage of molded pieces, degree of water absorption) of biocomposites on the base of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) biopolymer. For this purpose, 1 mm of length flax and hemp fibers was surface-modified by means of aqueous solution of NaOH (sodium hydroxide) with concentrations of 2%, 5% and 10%. The composites were made using the extrusion technology. The test specimens were produced by injection molding technology. In total, eight types of biocomposites with modified and non-modified fibers were produced, and each biocomposite contained the same filler content (15 wt.%). Their properties were compared in some cases with pure PHBV polymer. In the case of biocomposites filled with hemp fibers, it was noted that an increase of the alkalizing solution concentration improved most of the tested properties of the obtained biocomposites. On the other hand, in the case of flax fibers, there was a significant decrease in most of the mechanical properties tested for the composite containing fibers etched by 10% NaOH solution. The obtained results were verified by examining fibers and the destroyed specimens with a scanning electron microscope (SEM) and an optical microscope, which confirmed, especially, the significant geometry changes of the flax fibers etched by 10% NaOH solution. This procedure also resulted in a significant change of processing properties-a composite of this fiber type required about 20 °C lower temperature during the extrusion and injection molding process in order to obtain the right product. These results lead to the important conclusion that for each filler of the plant-origin and polymer matrix, the fiber alkalization method should be selected individually in order to improve the specific properties of biocomposites.

9.
Water Sci Technol ; 78(5-6): 1208-1218, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30339545

RESUMO

In the paper, a comparison of prediction results concerning the annual number of discharges of stormwater from the drainage system due to stormwater overflows is depicted. The prediction has been computed by means of storm water management model (SWMM) and probabilistic models. Regarding the probabilistic modelling some simple statistical models such as logit, probit, Gompertz and linear discriminant analysis model have been applied, and as for the hydrodynamic modelling a generator of synthetic rainfall based on the Monte Carlo method has been used. The analyses conducted has shown that logit, probit and Gompertz models give outputs that are comparable with the results of hydrodynamic modelling and are concordant with observations. Whereas the annual number of stormwater discharge predicted by the linear discriminant analysis model is significantly lower than the number obtained by hydrodynamic modelling. The calculations made have confirmed the possibility of using statistical models as an alternative for developing labour-consuming and complex hydrodynamic models. The statistical models can be used successfully to predict the stormwater overflows operation provided that the measurements of rainfall in the catchment and of filling the overflow are available.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Chuva , Engenharia Sanitária/métodos , Movimentos da Água , Hidrodinâmica , Modelos Lineares , Método de Monte Carlo , Água
10.
Acta Biochim Pol ; 60(4): 689-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24432318

RESUMO

One of the important environmental issues is the quality of surface waters in the world. Poland belongs to countries with a low quality of the inland waters. The sanitary condition of the five water reservoirs of south-east Poland was analyzed. Water and sediment samples were incubated on the selective and/or differential media. High concentrations of many common and pathogenic microbial indicators were shown in those samples. Those reservoirs are used by people, especially during summer. Because of the high epidemiological risk, detailed analysis of all inland waters should be performed routinely.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/patogenicidade , Monitoramento Ambiental , Humanos , Polônia , Recursos Hídricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA