Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 5(17): 9702-9706, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391456

RESUMO

We report an electronically and optically controlled bioelectronic field-effect transistor (FET) based on the hybrid film of photoactive bacteriorhodopsin and electronically conducting single-walled carbon nanotubes (SWNTs). Two-dimensional (2D) crystals of bacteriorhodopsin form the photoactive center of the bio-nano complex, whereas one-dimensional (1D) pure SWNTs provide the required electronic support. The redshift in the Raman spectra indicates the electronic doping with an estimated charge density of 3 × 106 cm-2. The hybrid structure shows a conductivity of 19 µS/m and semiconducting characteristics due to preferential binding with selective diameters of semiconducting SWNTs. The bioelectronic transistor fabricated using direct laser lithography shows both optical and electronic gating with a significant on/off switch ratio of 8.5 and a photoconductivity of 13.15 µS/m. An n-type FET shows complementary p-type characteristics under light due to optically controlled, electronic doping by the "proton-pumping" bacteriorhodopsin. The fabricated bioelectronic transistor exhibits both electronically and optically well-controlled bifunctionality based on the functionalized hybrid electronic material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA