Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 36(1): e4781, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654608

RESUMO

Evidence mounts that the steady-state cellular water efflux (unidirectional) first-order rate constant (kio [s-1 ]) magnitude reflects the ongoing, cellular metabolic rate of the cytolemmal Na+ , K+ -ATPase (NKA), c MRNKA (pmol [ATP consumed by NKA]/s/cell), perhaps biology's most vital enzyme. Optimal 1 H2 O MR kio determinations require paramagnetic contrast agents (CAs) in model systems. However, results suggest that the homeostatic metabolic kio biomarker magnitude in vivo is often too large to be reached with allowable or possible CA living tissue distributions. Thus, we seek a noninvasive (CA-free) method to determine kio in vivo. Because membrane water permeability has long been considered important in tissue water diffusion, we turn to the well-known diffusion-weighted MRI (DWI) modality. To analyze the diffusion tensor magnitude, we use a parsimoniously primitive model featuring Monte Carlo simulations of water diffusion in virtual ensembles comprising water-filled and -immersed randomly sized/shaped contracted Voronoi cells. We find this requires two additional, cytometric properties: the mean cell volume (V [pL]) and the cell number density (ρ [cells/µL]), important biomarkers in their own right. We call this approach metabolic activity diffusion imaging (MADI). We simulate water molecule displacements and transverse MR signal decays covering the entirety of b-space from pure water (ρ = V = 0; kio undefined; diffusion coefficient, D0 ) to zero diffusion. The MADI model confirms that, in compartmented spaces with semipermeable boundaries, diffusion cannot be described as Gaussian: the nanoscopic D (Dn ) is diffusion time-dependent, a manifestation of the "diffusion dispersion". When the "well-mixed" (steady-state) condition is reached, diffusion becomes limited, mainly by the probabilities of (1) encountering (ρ, V), and (2) permeating (kio ) cytoplasmic membranes, and less so by Dn magnitudes. Importantly, for spaces with large area/volume (A/V; claustrophobia) ratios, this can happen in less than a millisecond. The model matches literature experimental data well, with implications for DWI interpretations.


Assuntos
Diagnóstico por Imagem , Água , Ativação Metabólica
2.
NMR Biomed ; 36(1): e4782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654761

RESUMO

We introduce a new 1 H2 O magnetic resonance approach: metabolic activity diffusion imaging (MADI). Numerical diffusion-weighted imaging decay simulations characterized by the mean cellular water efflux (unidirectional) rate constant (kio ), mean cell volume (V), and cell number density (ρ) are produced from Monte Carlo random walks in virtual stochastically sized/shaped cell ensembles. Because of active steady-state trans-membrane water cycling (AWC), kio reflects the cytolemmal Na+ , K+ ATPase (NKA) homeostatic cellular metabolic rate (c MRNKA ). A digital 3D "library" contains thousands of simulated single diffusion-encoded (SDE) decays. Library entries match well with disparate, animal, and human experimental SDE decays. The V and ρ values are consistent with estimates from pertinent in vitro cytometric and ex vivo histopathological literature: in vivo V and ρ values were previously unavailable. The library allows noniterative pixel-by-pixel experimental SDE decay library matchings that can be used to advantage. They yield proof-of-concept MADI parametric mappings of the awake, resting human brain. These reflect the tissue morphology seen in conventional MRI. While V is larger in gray matter (GM) than in white matter (WM), the reverse is true for ρ. Many brain structures have kio values too large for current, invasive methods. For example, the median WM kio is 22s-1 ; likely reflecting mostly exchange within myelin. The kio •V product map displays brain tissue c MRNKA variation. The GM activity correlates, quantitatively and qualitatively, with the analogous resting-state brain 18 FDG-PET tissue glucose consumption rate (t MRglucose ) map; but noninvasively, with higher spatial resolution, and no pharmacokinetic requirement. The cortex, thalamus, putamen, and caudate exhibit elevated metabolic activity. MADI accuracy and precision are assessed. The results are contextualized with literature overall homeostatic brain glucose consumption and ATP production/consumption measures. The MADI/PET results suggest different GM and WM metabolic pathways. Preliminary human prostate results are also presented.


Assuntos
Descanso , ATPase Trocadora de Sódio-Potássio , Humanos , Mapeamento Encefálico , Glucose , Água
3.
Brain Behav Immun ; 22(8): 1178-89, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18599265

RESUMO

Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.


Assuntos
Analgesia , Citocinas/metabolismo , Morfina/farmacologia , Dor/imunologia , Analgésicos Opioides/farmacologia , Animais , Cateteres de Demora , Quimiocina CX3CL1/imunologia , Citocinas/líquido cefalorraquidiano , Hiperalgesia/tratamento farmacológico , Injeções Espinhais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1/imunologia , Masculino , Metadona/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Medição da Dor , Limiar da Dor/efeitos dos fármacos , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/imunologia , Medula Espinal/metabolismo , Fatores de Tempo
4.
Neurobiol Learn Mem ; 86(3): 311-21, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16774840

RESUMO

In four experiments the effects of serial compound conditioning on responding to a trace-conditioned CS were evaluated using a fear conditioning paradigm. The subjects were 18- and 25-day-old Sprague-Dawley rats, previously shown to exhibit little or no trace fear conditioning. Here, animals as young as 18 days of age were shown to be capable of trace conditioning between a visual CS1 and a shock US, provided the trace interval was filled with a non-target CS2 during serial conditioning trials (CS1-->CS2-->US). To explore cholinergic mechanisms involved in trace and serial conditioning, additional experiments assessed conditioned responding following pre-training administration of the muscarinic receptor antagonist scopolamine. Scopolamine produced a dose-dependent reduction in responding to the trace CS1, regardless of whether subjects were trained with standard trace (CS1-->trace interval-->US) or serial (CS1-->CS2-->US) trials. Responding to CS2 was unaffected by scopolamine. These data suggest that central cholinergic systems are functional in the young animals, but are not normally sufficiently activated by standard trace conditioning procedures. The results suggest that serial compound conditioning can promote trace conditioning in young rats, as it does in adults, perhaps by enhancing cholinergic activity during training. Implications for the late ontogenetic emergence of trace conditioning as it relates to maturation of neural pathways and their role in the potentiating effects of a gap filler are discussed.


Assuntos
Encéfalo/fisiologia , Fibras Colinérgicas/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Aprendizagem Seriada/fisiologia , Fatores Etários , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Encéfalo/crescimento & desenvolvimento , Fibras Colinérgicas/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Medo/efeitos dos fármacos , Antagonistas Muscarínicos/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Escopolamina/administração & dosagem , Aprendizagem Seriada/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA