Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7951): 270-275, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859548

RESUMO

Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation1. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies2. A wider analysis of interactions between deforestation and precipitation-and especially how any such interactions might vary across spatial scales-is lacking. Here we show reduced precipitation over deforested regions across the tropics. Our results arise from a pan-tropical assessment of the impacts of 2003-2017 forest loss on precipitation using satellite, station-based and reanalysis datasets. The effect of deforestation on precipitation increased at larger scales, with satellite datasets showing that forest loss caused robust reductions in precipitation at scales greater than 50 km. The greatest declines in precipitation occurred at 200 km, the largest scale we explored, for which 1 percentage point of forest loss reduced precipitation by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the direction of precipitation responses to forest loss, which we attribute to sparse in situ tropical measurements. We estimate that future deforestation in the Congo will reduce local precipitation by 8-10% in 2100. Our findings provide a compelling argument for tropical forest conservation to support regional climate resilience.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Chuva , Árvores , Clima Tropical , Congo , Conservação dos Recursos Naturais/tendências , Ciclo Hidrológico
2.
Geophys Res Lett ; 49(10): e2021GL095136, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35859721

RESUMO

Moisture evaporated from the land contributing to precipitation in a given area is known as precipitation recycling and needs to be accurately represented in climate models. The Amazon and Congo basins are reported to have the highest precipitation recycling rates globally, but model representation has not yet been assessed over these regions. We evaluated recycling over the Amazon and Congo in 45 Coupled Model Intercomparison Project Phase 6 models. Regional annual means from models and reanalyzes agreed well over both basins. Models captured seasonal variation in recycling over the Congo but there was a large-scale underestimation of recycling during the Amazon dry-to-wet transition season relative to ERA5, caused by models underestimating Amazon evapotranspiration and overestimating incoming wind speed and associated water vapor imports. Both regions show robust declines in precipitation recycling over the next century under future climate-change scenarios. Our results suggest models may underestimate impacts of deforestation on regional precipitation in the Amazon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA