Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Annu Rev Genet ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227137

RESUMO

The evolution of the placenta was transformative. It changed how offspring are fed during gestation from depositing all the resources into an egg to continually supplying resources throughout gestation. Placental evolution is infinitely complex, with many moving parts, but at the core it is driven by a conflict over resources between the mother and the baby, which sets up a Red Queen race, fueling rapid diversification of morphological, cellular, and genetic forms. Placentas from even closely related species are highly divergent in form and function, and many cellular processes are distinct. If we could extract the entirety of genomic information for placentas across all species, including the many hundreds that have evolved in fish and reptiles, we could find their shared commonality, and that would tell us which of the many pieces really matter. We do not have this information, but we do have clues. Convergent evolution mechanisms were repeatedly used in the placenta, including the intense selective pressure to co-opt an envelope protein to build a multinucleated syncytium, the use of the same hormones and structural proteins in placentas derived from separate embryonic origins that arose hundreds of millions of years apart, and the co-option of endogenous retroviruses to form capsids as a way of transport and as mutagens to form new enhancers. As a result, the placental genome is the Wild West of biology, set up to rapidly change, adapt, and innovate. This ability to adapt facilitated the evolution of big babies with big brains and will continue to support offspring and their mothers in our ever-changing global environment.

2.
Biol Reprod ; 110(4): 819-833, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206869

RESUMO

Uterine injury from procedures such as Cesarean sections (C-sections) often have severe consequences on subsequent pregnancy outcomes, leading to disorders such as placenta previa, placenta accreta, and infertility. With rates of C-section at ~30% of deliveries in the USA and projected to continue to climb, a deeper understanding of the mechanisms by which these pregnancy disorders arise and opportunities for intervention are needed. Here we describe a rodent model of uterine injury on subsequent in utero outcomes. We observed three distinct phenotypes: increased rates of resorption and death, embryo spacing defects, and placenta accreta-like features of reduced decidua and expansion of invasive trophoblasts. We show that the appearance of embryo spacing defects depends entirely on the phase of estrous cycle at the time of injury. Using RNA-seq, we identified perturbations in the expression of components of the COX/prostaglandin pathway after recovery from injury, a pathway that has previously been demonstrated to play an important role in embryo spacing. Therefore, we demonstrate that uterine damage in this mouse model causes morphological and molecular changes that ultimately lead to placental and embryonic developmental defects.


Assuntos
Placenta Acreta , Placenta , Humanos , Gravidez , Feminino , Animais , Camundongos , Diestro , Útero , Cesárea/efeitos adversos , Estudos Retrospectivos
3.
Am J Hum Genet ; 109(6): 1117-1139, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35588731

RESUMO

Preeclampsia is a multi-organ complication of pregnancy characterized by sudden hypertension and proteinuria that is among the leading causes of preterm delivery and maternal morbidity and mortality worldwide. The heterogeneity of preeclampsia poses a challenge for understanding its etiology and molecular basis. Intriguingly, risk for the condition increases in high-altitude regions such as the Peruvian Andes. To investigate the genetic basis of preeclampsia in a population living at high altitude, we characterized genome-wide variation in a cohort of preeclamptic and healthy Andean families (n = 883) from Puno, Peru, a city located above 3,800 meters of altitude. Our study collected genomic DNA and medical records from case-control trios and duos in local hospital settings. We generated genotype data for 439,314 SNPs, determined global ancestry patterns, and mapped associations between genetic variants and preeclampsia phenotypes. A transmission disequilibrium test (TDT) revealed variants near genes of biological importance for placental and blood vessel function. The top candidate region was found on chromosome 13 of the fetal genome and contains clotting factor genes PROZ, F7, and F10. These findings provide supporting evidence that common genetic variants within coagulation genes play an important role in preeclampsia. A selection scan revealed a potential adaptive signal around the ADAM12 locus on chromosome 10, implicated in pregnancy disorders. Our discovery of an association in a functional pathway relevant to pregnancy physiology in an understudied population of Native American origin demonstrates the increased power of family-based study design and underscores the importance of conducting genetic research in diverse populations.


Assuntos
Pré-Eclâmpsia , Altitude , Fatores de Coagulação Sanguínea , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Fator VII/genética , Fator X/genética , Feminino , Humanos , Peru/epidemiologia , Placenta , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Gravidez
4.
Biol Reprod ; 105(1): 244-257, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33982062

RESUMO

The obstetrical conditions placenta accreta spectrum (PAS) and placenta previa are a significant source of pregnancy-associated morbidity and mortality, yet the specific molecular and cellular underpinnings of these conditions are not known. In this study, we identified misregulated gene expression patterns in tissues from placenta previa and percreta (the most extreme form of PAS) compared with control cases. By comparing this gene set with existing placental single-cell and bulk RNA-Seq datasets, we show that the upregulated genes predominantly mark extravillous trophoblasts. We performed immunofluorescence on several candidate molecules and found that PRG2 and AQPEP protein levels are upregulated in both the fetal membranes and the placental disk in both conditions. While this increased AQPEP expression remains restricted to trophoblasts, PRG2 is mislocalized and is found throughout the fetal membranes. Using a larger patient cohort with a diverse set of gestationally aged-matched controls, we validated PRG2 as a marker for both previa and PAS and AQPEP as a marker for only previa in the fetal membranes. Our findings suggest that the extraembryonic tissues surrounding the conceptus, including both the fetal membranes and the placental disk, harbor a signature of previa and PAS that is characteristic of EVTs and that may reflect increased trophoblast invasiveness.


Assuntos
Proteína Básica Maior de Eosinófilos/genética , Membranas Extraembrionárias/metabolismo , Regulação da Expressão Gênica , Metaloproteases/genética , Placenta Acreta/metabolismo , Placenta Prévia/metabolismo , Proteoglicanas/genética , Proteína Básica Maior de Eosinófilos/metabolismo , Feminino , Humanos , Metaloproteases/metabolismo , Gravidez , Proteoglicanas/metabolismo
5.
Mol Biol Evol ; 37(9): 2679-2690, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421768

RESUMO

Placentation evolved many times independently in vertebrates. Although the core functions of all placentas are similar, we know less about how this similarity extends to the molecular level. Here, we study Poeciliopsis, a unique genus of live-bearing fish that have independently evolved complex placental structures at least three times. The maternal follicle is a key component of these structures. It envelops yolk-rich eggs and is morphologically simple in lecithotrophic species but has elaborate villous structures in matrotrophic species. Through sequencing, the follicle transcriptome of a matrotrophic, Poeciliopsis retropinna, and lecithotrophic, P. turrubarensis, species we found genes known to be critical for placenta function expressed in both species despite their difference in complexity. Additionally, when we compare the transcriptome of different river populations of P. retropinna, known to vary in maternal provisioning, we find differential expression of secretory genes expressed specifically in the top layer of villi cells in the maternal follicle. This provides some of the first evidence that the placental structures of Poeciliopsis function using a secretory mechanism rather than direct contact with maternal circulation. Finally, when we look at the expression of placenta proteins at the maternal-fetal interface of a larger sampling of Poeciliopsis species, we find expression of key maternal and fetal placenta proteins in their cognate tissue types of all species, but follicle expression of prolactin is restricted to only matrotrophic species. Taken together, we suggest that all Poeciliopsis follicles are poised for placenta function but require expression of key genes to form secretory villi.


Assuntos
Evolução Biológica , Ciprinodontiformes/metabolismo , Placentação , Viviparidade não Mamífera , Animais , Ciprinodontiformes/anatomia & histologia , Feminino , Gravidez , Proteínas da Gravidez/metabolismo , Prolactina/metabolismo , Via Secretória/genética , Transcriptoma
6.
Mol Biol Evol ; 37(5): 1376-1386, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960923

RESUMO

The evolution of a placenta is predicted to be accompanied by rapid evolution of genes involved in processes that regulate mother-offspring interactions during pregnancy, such as placenta formation, embryonic development, and nutrient transfer to offspring. However, these predictions have only been tested in mammalian species, where only a single instance of placenta evolution has occurred. In this light, the genus Poeciliopsis is a particularly interesting model for placenta evolution, because in this genus a placenta has evolved independently from the mammalian placenta. Here, we present and compare genome assemblies of two species of the livebearing fish genus Poeciliopsis (family Poeciliidae) that differ in their reproductive strategy: Poeciliopsis retropinna which has a well-developed complex placenta and P. turrubarensis which lacks a placenta. We applied different assembly strategies for each species: PacBio sequencing for P. retropinna (622-Mb assembly, scaffold N50 of 21.6 Mb) and 10× Genomics Chromium technology for P. turrubarensis (597-Mb assembly, scaffold N50 of 4.2 Mb). Using the high contiguity of these genome assemblies and near-completeness of gene annotations to our advantage, we searched for gene duplications and performed a genome-wide scan for genes evolving under positive selection. We find rapid evolution in major parts of several molecular pathways involved in parent-offspring interaction in P. retropinna, both in the form of gene duplications as well as positive selection. We conclude that the evolution of the placenta in the genus Poeciliopsis is accompanied by rapid evolution of genes involved in similar genomic pathways as found in mammals.


Assuntos
Ciprinodontiformes/genética , Genoma , Características de História de Vida , Seleção Genética , Viviparidade não Mamífera/genética , Animais , Feminino , Duplicação Gênica , Masculino , Placenta , Gravidez
7.
Cell Death Differ ; 27(1): 297-309, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31164717

RESUMO

The Siva protein, named after the Hindu God of Destruction, plays important roles in apoptosis in various contexts, including downstream of death receptor activation or p53 tumor suppressor engagement. The function of Siva in organismal development and homeostasis, however, has remained uncharacterized. Here, we generate Siva knockout mice to characterize the physiological function of Siva in vivo. Interestingly, we find that Siva deficiency causes early embryonic lethality accompanied by multiple phenotypes, including developmental delay, abnormal neural tube closure, and defective placenta and yolk sac formation. Examination of Siva expression during embryogenesis shows that Siva is expressed in both embryonic and extra-embryonic tissues, including within the mesoderm, which may explain the vascular defects observed in the placenta and yolk sac. The embryonic phenotypes caused by Siva loss are not rescued by p53 deficiency, nor do they resemble those of p53 null embryos, suggesting that the embryonic function of Siva is not related to the p53 pathway. Moreover, loss of the Ripk3 necroptosis protein does not rescue the observed lethality or developmental defects, suggesting that Siva may play a non-apoptotic role in development. Collectively, these studies reveal a key role for Siva in proper embryonic development.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Desenvolvimento Embrionário , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/metabolismo , Feminino , Genes Letais , Coração/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Tubo Neural/anormalidades , Fenótipo , Placenta/irrigação sanguínea , Gravidez , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Saco Vitelino/irrigação sanguínea
8.
Placenta ; 65: 65-75, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29908643

RESUMO

Chorionic villus sampling (CVS), routinely used for prenatal diagnosis of cytogenetic disorders, also possesses great potential for the study of placentation. To better understand villus biology, human placentation, and how these relate to pregnancy outcomes, we examined the morphology and transcriptomes of villi obtained via CVS from 10 to 14 weeks of pregnancy and correlated these with pregnancy attributes and clinical outcomes. First, we established a morphological scoring system based on three main villus features: branching, budding and vascularization. We then tested whether morphology scores were predictive of pregnancy attributes and clinical outcomes. Finally, we used RNA sequencing to assess the transcriptional basis of villus morphology and tested the hypothesis that gene expression may predict pregnancy outcomes. We demonstrate that villus morphology varies tremendously between patients, irrespective of gestational age, and that transcriptional differences are highly predictive of villus morphology. We show that pre-eclampsia markers are associated with villi with low morphology scores. Additionally, we identify SVEP1 as a possible biomarker for defining gestational age. Overall, chorionic villi in the first trimester remain one of the few means to correlate placental function with pregnancy outcome and these samples are a valuable and increasingly rare resource.


Assuntos
Vilosidades Coriônicas/metabolismo , Vilosidades Coriônicas/patologia , Placenta/metabolismo , Placentação/genética , Primeiro Trimestre da Gravidez/genética , Adulto , Biomarcadores/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Vilosidades Coriônicas/irrigação sanguínea , Vilosidades Coriônicas/crescimento & desenvolvimento , Amostra da Vilosidade Coriônica , Análise Citogenética , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Masculino , Tamanho do Órgão , Placenta/patologia , Gravidez , Resultado da Gravidez/genética , Diagnóstico Pré-Natal , Análise de Sequência de RNA
9.
Cell Rep ; 21(1): 37-46, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978482

RESUMO

The early Xenopus laevis embryo is replete with dynamic spatial waves. One such wave, the cell division wave, emerges from the collective cell division timing of first tens and later hundreds of cells throughout the embryo. Here, we show that cell division waves do not propagate between neighboring cells and do not rely on cell-to-cell coupling to maintain their division timing. Instead, intrinsic variation in division period autonomously and gradually builds these striking patterns of cell division. Disrupting this pattern of division by placing embryos in a temperature gradient resulted in highly asynchronous entry to the midblastula transition and misexpression of the mesodermal marker Xbra. Remarkably, this gene expression defect is corrected during involution, resulting in delayed yet normal Xbra expression and viable embryos. This implies the existence of a previously unknown mechanism for normalizing mesodermal gene expression during involution.


Assuntos
Relógios Biológicos/genética , Mesoderma/metabolismo , Proteínas com Domínio T/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Animais , Divisão Celular , Temperatura Baixa , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
10.
Elife ; 62017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895534

RESUMO

Eutherians are often mistakenly termed 'placental mammals', but marsupials also have a placenta to mediate early embryonic development. Lactation is necessary for both infant and fetal development in eutherians and marsupials, although marsupials have a far more complex milk repertoire that facilitates morphogenesis of developmentally immature young. In this study, we demonstrate that the anatomically simple tammar placenta expresses a dynamic molecular program that is reminiscent of eutherian placentation, including both fetal and maternal signals. Further, we provide evidence that genes facilitating fetal development and nutrient transport display convergent co-option by placental and mammary gland cell types to optimize offspring success.


Assuntos
Eutérios/genética , Lactação/genética , Placentação/genética , Animais , Evolução Biológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite , Placenta/metabolismo , Gravidez
11.
Placenta ; 60 Suppl 1: S5-S9, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28108031

RESUMO

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2016 there were twelve themed workshops, four of which are summarized in this report. These workshops covered innovative technologies applied to new and traditional areas of placental research: 1) genomic communication; 2) bioinformatics; 3) trophoblast biology and pathology; 4) placental transport systems.


Assuntos
Pesquisa Biomédica/métodos , Biologia Computacional/métodos , Congressos como Assunto , Genômica/métodos , Troca Materno-Fetal , Placenta/fisiologia , Animais , Transporte Biológico , Pesquisa Biomédica/tendências , Biologia Computacional/tendências , Metilação de DNA , Exoma , Feminino , Genômica/tendências , Humanos , Agências Internacionais , Placenta/citologia , Placenta/patologia , Placenta/fisiopatologia , Gravidez , Complicações na Gravidez/patologia , Complicações na Gravidez/fisiopatologia , Sociedades Científicas , Trofoblastos/citologia , Trofoblastos/patologia , Trofoblastos/fisiologia
12.
Dev Biol ; 426(2): 155-164, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27157655

RESUMO

The Xenopus community has embraced recent advances in sequencing technology, resulting in the accumulation of numerous RNA-Seq and ChIP-Seq datasets. However, easily accessing and comparing datasets generated by multiple laboratories is challenging. Thus, we have created a central space to view, search and analyze data, providing essential information on gene expression changes and regulatory elements present in the genome. XenMine (www.xenmine.org) is a user-friendly website containing published genomic datasets from both Xenopus tropicalis and Xenopus laevis. We have established an analysis pipeline where all published datasets are uniformly processed with the latest genome releases. Information from these datasets can be extracted and compared using an array of pre-built or custom templates. With these search tools, users can easily extract sequences for all putative regulatory domains surrounding a gene of interest, identify the expression values of a gene of interest over developmental time, and analyze lists of genes for gene ontology terms and publications. Additionally, XenMine hosts an in-house genome browser that allows users to visualize all available ChIP-Seq data, extract specifically marked sequences, and aid in identifying important regulatory elements within the genome. Altogether, XenMine is an excellent tool for visualizing, accessing and querying analyzed datasets rapidly and efficiently.


Assuntos
Mineração de Dados , Bases de Dados Genéticas , Genoma , Genômica/métodos , Xenopus/genética , Animais , Sequência de Bases , Conjuntos de Dados como Assunto , Expressão Gênica , Ontologia Genética , Internet , RNA/biossíntese , RNA/genética , Sequências Reguladoras de Ácido Nucleico , Software
13.
Curr Biol ; 26(2): 230-236, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26774788

RESUMO

While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs.


Assuntos
Diferenciação Celular/fisiologia , Células Gigantes/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Animais , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Gravidez
14.
Elife ; 4: e05538, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25871848

RESUMO

The effects of genetic variation on gene regulation in the developing mammalian embryo remain largely unexplored. To globally quantify these effects, we crossed two divergent mouse strains and asked how genotype of the mother or of the embryo drives gene expression phenotype genomewide. Embryonic expression of 331 genes depends on the genotype of the mother. Embryonic genotype controls allele-specific expression of 1594 genes and a highly overlapping set of cis-expression quantitative trait loci (eQTL). A marked paucity of trans-eQTL suggests that the widespread expression differences do not propagate through the embryonic gene regulatory network. The cis-eQTL genes exhibit lower-than-average evolutionary conservation and are depleted for developmental regulators, consistent with purifying selection acting on expression phenotype of pattern formation genes. The widespread effect of maternal and embryonic genotype in conjunction with the purifying selection we uncovered suggests that embryogenesis is an important and understudied reservoir of phenotypic variation.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Padrões de Herança , Locos de Características Quantitativas , Alelos , Animais , Evolução Biológica , Cruzamentos Genéticos , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica , Variação Genética , Genótipo , Masculino , Camundongos , Fenótipo
15.
Nat Commun ; 6: 6546, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25775035

RESUMO

In embryonic stem cells, extracellular signals are required to derepress developmental promoters to drive lineage specification, but the proteins involved in connecting extrinsic cues to relaxation of chromatin remain unknown. We demonstrate that the helix-loop-helix (HLH) protein, HEB, directly associates with the Polycomb repressive complex 2 (PRC2) at a subset of developmental promoters, including at genes involved in mesoderm and endoderm specification and at the Hox and Fox gene families. While we show that depletion of HEB does not affect mouse ESCs, it does cause premature differentiation after exposure to Activin. Further, we find that HEB deposition at developmental promoters is dependent upon PRC2 and independent of Nodal, whereas HEB association with SMAD2/3 elements is dependent of Nodal, but independent of PRC2. We suggest that HEB is a fundamental link between Nodal signalling, the derepression of a specific class of poised promoters during differentiation, and lineage specification in mouse ESCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Nodal/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ativinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem da Célula , Imunoprecipitação da Cromatina , Endoderma/metabolismo , Elementos Facilitadores Genéticos , Genoma , Mesoderma/metabolismo , Camundongos , Família Multigênica , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Interferência de RNA , Análise de Sequência de RNA , Transdução de Sinais
16.
Dev Cell ; 32(3): 345-57, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25669884

RESUMO

Transcription factor complexes have varied effects on cell fate and behavior, but how this diversification of function occurs is largely unknown. The Nodal signaling pathway has many biological functions that all converge on the transcription factors Smad2/3. Smad2/3 has many cofactors, and alternative usage of these may provide a mechanism for modulating Smad2/3 function. Here, we investigate how perturbation of the cofactor E2a affects global patterns of Smad2/3 binding and gene expression during gastrulation. We find that E2a regulates early development in two ways. E2a changes the position of Smad2/3 binding at the Nodal inhibitor lefty, resulting in direct repression of lefty that is critical for mesendoderm specification. Separately, E2a is necessary to drive transcription of Smad2/3 target genes, including critical regulators of dorsal cell fate and morphogenesis. Overall, we find that E2a functions as both a transcriptional repressor and activator to precisely regulate Nodal signaling.


Assuntos
Gastrulação/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animais , Diferenciação Celular/fisiologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mesoderma/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator 3 de Transcrição , Fator de Crescimento Transformador beta/metabolismo , Xenopus/embriologia
18.
Genom Data ; 2: 192-194, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25419512

RESUMO

Recently, using the frog Xenopus laevis as a model system, we showed that transcription factor Rfx2 coordinates many genes involved in ciliogenesis and cell movement in multiciliated cells (Chung et al., 2014). To our knowledge, it was the first paper to utilize the genomic resources, including genome sequences and interim gene annotations, from the ongoing Xenopus laevis genome project. For researchers who are interested in the application of genomics and systems biology approaches in Xenopus studies, here we provide additional details about our dataset (NCBI GEO accession number GSE50593) and describe how we analyzed RNA-seq and ChIP-seq data to identify direct targets of Rfx2.

19.
Cell ; 158(3): 673-88, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083876

RESUMO

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.


Assuntos
Células/metabolismo , Código das Histonas , Histonas/metabolismo , Transcrição Gênica , Animais , Inteligência Artificial , Genômica , Humanos , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismo
20.
PLoS Genet ; 10(5): e1004290, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785991

RESUMO

Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Placenta/metabolismo , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Feminino , Deleção de Genes , Humanos , Neurogênese , Poliploidia , Gravidez , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA