Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Leukoc Biol ; 76(2): 352-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15155778

RESUMO

This investigation sought to determine if P-selectin-mediated mechanisms contributed to macrophage localization in damaged muscle, an essential process for muscle regeneration. Mice were injected intravenously (i.v.) with soluble P-selectin glycoprotein ligand-1 (sPSGL-1) at 5, 50, or 200 microg/mouse or with 100 microl vehicle alone, and then, lengthening contractions were induced in hindlimb plantar-flexor muscles. The contractions caused fiber damage in soleus muscles, with maximal invasion by CD11b+ mononuclear cells at 24 h post-injury and substantial accumulation of CD11b+ mononuclear cells in the extracellular matrix up to 7 days post-injury. sPSGL-1 treatment caused a dose-dependent decrease in the number of regenerating fibers (P=0.021), as determined by developmental myosin heavy chain (dMHC) expression. This expression was reduced 93% at 7 days post-injury by the highest dose of sPSGL-1, which had no significant influence on intrafiber or extracellular accumulation of cells expressing CD11b, a general marker for phagocytic cells. Additional mice were injected i.v. with 20 microg anti-P-selectin or isotype-control immunoglobulin G and were then subjected to lengthening contractions as before. At 7 days post-injury, soleus muscles from anti-P-selectin-treated mice contained 48% fewer mononuclear cells that bound ER-BMDM1 (P=0.019), a marker for mature macrophages and dendritic cells, and 84% fewer fibers expressing dMHC (P = 0.006), compared with muscles from isotype-injected, control mice. The number of CD11b+ cells was not significantly different between groups. The results are consistent with the concept that P-selectin is involved in the recruitment, maturation, and/or activation of cells that are critical for muscle fiber regeneration.


Assuntos
Músculos/fisiologia , Selectina-P/fisiologia , Regeneração/fisiologia , Animais , Antígeno CD11b/fisiologia , Movimento Celular/fisiologia , Leucócitos Mononucleares/fisiologia , Masculino , Camundongos , Músculos/lesões , Fatores de Tempo
2.
J Morphol ; 208(3): 367-379, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29865549

RESUMO

Previous studies by Stephens and McNulty and Strecker and Stephens have demonstrated that foil barriers placed between the mesonephros and lateral plate at stages 12 to 15 inhibited limb development, but foil barriers placed between the neural tube and somites at stages 11 to 12 resulted in limbs with normal skeletal patterns. It was concluded that some influence present in the paraxial region of the embryo at stages 11 to 15 is necessary for normal limb development. The present study was undertaken to localize that influence more precisely. Foil barriers were placed in the lateral edge of the somites or segmental plate of stage 10 to 15 chick embryos. Barriers placed into stage 13 to 15 embryos resulted in chicks with normal limbs, but barriers placed into stage 10 to 11 embryos resulted in chicks with defective limbs. Barriers inserted just lateral to Hensen's node at stages 6 to 8 resulted in embryos with defective or absent wings. We also grafted stage 4 to 9 presumptive limb territories with and without Hensen's node. Explants without Hensen's node formed limb-like structures in 1% of the cases. Explants with Hensen's node formed limb-like structures in 27% of the cases. When barriers were implanted and a node was placed on the lateral side of the barrier, limbs formed in 40% of the cases. These data suggest a medial to lateral progression of some as yet unknown morphogenetic influence necessary for normal limb development and we hypothesized that the influence may initially emanate from Hensen's node.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA