Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374465

RESUMO

MCrAlYHf bond coats are employed in jet and aircraft engines, stationary gas turbines, and power plants, which require strong resistance to oxidation at high temperatures. This study investigated the oxidation behavior of a free-standing CoNiCrAlYHf coating with varying surface roughness. The surface roughness was analyzed using a contact profilometer and SEM. Oxidation tests were conducted in an air furnace at 1050 °C to examine the oxidation kinetics. X-ray diffraction, focused ion beam, scanning electron microscopy, and scanning transmission electron microscopy were employed to characterize the surface oxides. The results show that the sample with Ra = 0.130 µm demonstrates better oxidation resistance compared to Ra = 7.572 µm and other surfaces with higher roughness in this study. Reducing surface roughness led to a decrease in the thickness of oxide scales, while the smoothest surface exhibited increased growth of internal HfO2. The ß-phase on the surface with Ra = 130 µm demonstrated faster growth of Al2O3 compared to the γ-phase. An empirical model was suggested to explain the impact of surface roughness on oxidation behavior based on the correlation between the surface roughness level and oxidation rates.

2.
Bioresour Technol ; 319: 124162, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32992273

RESUMO

Napier grass is a promising energy source on account of its strong adaptability and high productivity. Herein, an O2-aided alkaline pretreatment with mild operating conditions was developed to modify Napier grass stem structure for improving its fractionated efficiency and enzymatic digestibility. Compared with the conventional alkaline pretreatment, it could be proceeded at lower temperature (80 °C) and dilute NaOH solution (1%) to remove over 80% lignin and retain 92% cellulose. The recovered lignin possessed typical structures of native lignin and well-preserved molecular weight, anticipating feasible potential in preparation of biomaterials or aromatic chemicals. Coupled with the enzymatic hydrolysis managements of solid remain and hydrolysate after the pretreatment, the recovery yields of glucose and xylose based on the raw material feeds reached 89.7% and 90.2%, respectively. This contribution demonstrates a highly-reliable strategy to fractionate Napier grass stem for maximizing fermentation sugar production and valorizing lignin toward sustainable biorefinery processes.


Assuntos
Lignina , Pennisetum , Celulose , Hidrólise , Xilose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA