RESUMO
Pediatric intestinal pseudo-obstruction (PIPO) is a rare congenital disorder of the enteric nervous system with distal colon aganglionosis potentially leading to intestinal obstruction. Recently, biallelic variants in KIF26A, encoding a crucial motor protein for the migration and differentiation of enteric neural crest cells, have been associated with a neurodevelopmental condition featuring cortical defects and PIPO-like features, though in absence of aganglionosis. So far, only 10 patients have been reported. In this study, we investigated three subjects with congenital hydrocephalus, neurodevelopmental impairment, and intestinal obstruction megacolon syndrome. Brain MRI revealed malformations within cortical dysplasia spectrum, including polymicrogyria and heterotopia. Pathology study of the intestine revealed aganglionosis and elevated acetylcholinesterase activity in parasympathetic nerve fibers. Through trio-exome sequencing (ES), we detected four novel biallelic KIF26A variants, including two missense changes (#1) and two distinct homozygous truncating variants in (#2 and #3). All variants are rare and predicted to be deleterious according to in silico tools. To characterize the impact of the missense variants, we performed 3D protein modeling using Alphafold3 and YASARA. Mutants exhibited increased energy scores compared to wild-type protein, supporting a significant structural destabilization of the protein. Our study expands the genotype and phenotype spectrum of the emerging KIF26A-related disorder.
RESUMO
Nuclear pore complexes (NPCs) regulate nucleocytoplasmic transport and are anchored in the nuclear envelope by the transmembrane nucleoporin NDC1. NDC1 is essential for post-mitotic NPC assembly and the recruitment of ALADIN to the nuclear envelope. While no human disorder has been associated to one of the three transmembrane nucleoporins, biallelic variants in AAAS, encoding ALADIN, cause triple A syndrome (Allgrove syndrome). Triple A syndrome, characterized by alacrima, achalasia, and adrenal insufficiency, often includes progressive demyelinating polyneuropathy and other neurological complaints. In this report, diagnostic exome and/or RNA sequencing was performed in seven individuals from four unrelated consanguineous families with AAAS-negative triple A syndrome. Molecular and clinical studies followed to elucidate the pathogenic mechanism. The affected individuals presented with intellectual disability, motor impairment, severe demyelinating with secondary axonal polyneuropathy, alacrima, and achalasia. None of the affected individuals has adrenal insufficiency. All individuals presented with biallelic NDC1 in-frame deletions or missense variants that affect amino acids and protein domains required for ALADIN binding. No other significant variants associated with the phenotypic features were reported. Skin fibroblasts derived from affected individuals show decreased recruitment of ALADIN to the NE and decreased post-mitotic NPC insertion, confirming pathogenicity of the variants. Taken together, our results implicate biallelic NDC1 variants in the pathogenesis of polyneuropathy and a triple A-like disorder without adrenal insufficiency, by interfering with physiological NDC1 functions, including the recruitment of ALADIN to the NPC.
Assuntos
Insuficiência Adrenal , Acalasia Esofágica , Complexo de Proteínas Formadoras de Poros Nucleares , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Insuficiência Adrenal/genética , Insuficiência Adrenal/metabolismo , Alelos , Acalasia Esofágica/genética , Acalasia Esofágica/metabolismo , Acalasia Esofágica/patologia , Deficiência Intelectual/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Linhagem , Ligação ProteicaRESUMO
Increasingly long and complex informed consents have yielded studies demonstrating comparatively low participant comprehension and satisfaction with traditional face-to-face approaches. In parallel, interest in electronic consents for clinical and research genomics has steadily increased, yet limited data are available for trio-based genomic discovery studies. We describe the design, development, implementation, and validation of an electronic iConsent application for trio-based genomic research deployed to support genomic studies of cerebral palsy. iConsent development incorporated stakeholder perspectives including researchers, patient advocates, institutional review board members, and genomic data-sharing considerations. The iConsent platform integrated principles derived from prior electronic consenting research and elements of multimedia learning theory. Participant comprehension was assessed in an interactive teachback format. The iConsent application achieved nine of ten proposed desiderata for effective patient-focused electronic consenting for genomic research. Overall, participants demonstrated high comprehension and retention of key human subjects' considerations. Enrollees reported high levels of satisfaction with the iConsent, and we found that participant comprehension, iConsent clarity, privacy protections, and study goal explanations were associated with overall satisfaction. Although opportunities exist to optimize iConsent, we show that such an approach is feasible, can satisfy multiple stakeholder requirements, and can realize high participant satisfaction and comprehension while increasing study reach.
RESUMO
PURPOSE: Spastic paraplegia, intellectual disability, nystagmus, and obesity syndrome (SINO) is a rare autosomal dominant condition caused by heterozygous variants in KIDINS220. A total of 12 individuals are reported, comprising 8 with SINO and 4 with an autosomal recessive condition attributed to biallelic KIDINS220 variants. METHODS: In our international cohort, we have included 14 individuals, carrying 13 novel pathogenic KIDINS220 variants in heterozygous form. We assessed the clinical and molecular data of our cohort and previously reported individuals and, based on functional experiments, reached a better understanding of the pathogenesis behind the KIDINS220-related disease. RESULTS: Using fetal tissue and in vitro assays, we demonstrate that the variants generate KIDINS220 truncated forms that mislocalize in punctate intracellular structures, with decreased levels of the full-length protein, suggesting a trans-dominant negative effect. A total of 92% had their diagnosis within 3 years, with symptoms of developmental delay, spasticity, hypotonia, lack of eye contact, and nystagmus. We identified a KIDINS220 variant associated with fetal hydrocephalus and show that 58% of examined individuals present brain ventricular dilatation. We extend the phenotypic spectrum of SINO syndrome to behavioral manifestations not previously highlighted. CONCLUSION: Our study provides further insights into the clinical spectrum, etiology, and predicted functional impact of KIDINS220 variants.
RESUMO
Patatin-like phospholipase domain-containing lipase 8 (PNPLA8), one of the calcium-independent phospholipase A2 enzymes, is involved in various physiological processes through the maintenance of membrane phospholipids. Biallelic variants in PNPLA8 have been associated with a range of paediatric neurodegenerative disorders. However, the phenotypic spectrum, genotype-phenotype correlations and the underlying mechanisms are poorly understood. Here, we newly identified 14 individuals from 12 unrelated families with biallelic ultra-rare variants in PNPLA8 presenting with a wide phenotypic spectrum of clinical features. Analysis of the clinical features of current and previously reported individuals (25 affected individuals across 20 families) showed that PNPLA8-related neurological diseases manifest as a continuum ranging from variable developmental and/or degenerative epileptic-dyskinetic encephalopathy to childhood-onset neurodegeneration. We found that complete loss of PNPLA8 was associated with the more profound end of the spectrum, with congenital microcephaly. Using cerebral organoids generated from human induced pluripotent stem cells, we found that loss of PNPLA8 led to developmental defects by reducing the number of basal radial glial cells and upper-layer neurons. Spatial transcriptomics revealed that loss of PNPLA8 altered the fate specification of apical radial glial cells, as reflected by the enrichment of gene sets related to the cell cycle, basal radial glial cells and neural differentiation. Neural progenitor cells lacking PNPLA8 showed a reduced amount of lysophosphatidic acid, lysophosphatidylethanolamine and phosphatidic acid. The reduced number of basal radial glial cells in patient-derived cerebral organoids was rescued, in part, by the addition of lysophosphatidic acid. Our data suggest that PNPLA8 is crucial to meet phospholipid synthetic needs and to produce abundant basal radial glial cells in human brain development.
RESUMO
MPDZ, a gene with diverse functions mediating cell-cell junction interactions, receptor signaling, and binding multivalent scaffold proteins, is associated with a spectrum of clinically heterogeneous phenotypes with biallelic perturbation. Despite its clinical relevance, the mechanistic underpinnings of these variants remain elusive, underscoring the need for extensive case series and functional investigations. In this study, we conducted a systematic review of cases in the literature through two electronic databases following the PRISMA guidelines. We selected nine studies, including 18 patients, with homozygous or compound heterozygous variants in MPDZ and added five patients from four unrelated families with novel MPDZ variants. To evaluate the role of Mpdz on hearing, we analyzed available auditory electrophysiology data from a knockout murine model (Mpdzem1(IMPC)J/em1(IMPC)J) generated by the International Mouse Phenotyping Consortium. Using exome and genome sequencing, we identified three families with compound heterozygous variants, and one family with a homozygous frameshift variant. MPDZ-related disease is clinically heterogenous with hydrocephaly, vision impairment, hearing impairment and cardiovascular disease occurring most frequently. Additionally, we describe two unrelated patients with spasticity, expanding the phenotypic spectrum. Our murine analysis of the Mpdzem1(IMPC)J/em1(IMPC)J allele showed severe hearing impairment. Overall, we expand understanding of MPDZ-related phenotypes and highlight hearing impairment and spasticity among the heterogeneous phenotypes.
Assuntos
Fenótipo , Humanos , Feminino , Masculino , Animais , Camundongos , Linhagem , Mutação , Homozigoto , Proteínas de Membrana/genética , Criança , Perda Auditiva/genética , Perda Auditiva/patologia , Heterozigoto , Camundongos KnockoutRESUMO
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.
Assuntos
Mutação de Sentido Incorreto , Fator 1 de Elongação de Peptídeos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fator 1 de Elongação de Peptídeos/genética , FenótipoRESUMO
Developmental and epileptic encephalopathies (DEEs) refer to a group of severe epileptic syndromes characterized by seizures as well as a developmental delay which can be a consequence of the underlying etiology and/or the epileptic encephalopathy. The genes responsible for DEEs are numerous and their number is increasing since the availability of Next-Generation Sequencing. Pathogenic variants in GRM7, encoding the metabotropic glutamate receptor 7, were recently shown as a cause of a severe DEE with autosomal recessive inheritance. To date, only ten patients have been reported in the literature, generally with severe phenotypes including early-onset epilepsy, microcephaly, brain anomalies, and spasticity. We report here 5 patients from 3 independent families with biallelic variants in the GRM7 gene. We review the literature and provide further elements for the understanding of the genotype-phenotype correlation of this rare syndrome.
Assuntos
Encefalopatias , Epilepsia , Transtornos do Neurodesenvolvimento , Receptores de Glutamato Metabotrópico , Humanos , Epilepsia/genética , Encefalopatias/genética , Convulsões , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.
Assuntos
Distonia , Epilepsia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genéticaRESUMO
Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H (SMARCA5) or SNF2L (SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum.
RESUMO
Intellectual disability (ID), occurring in syndromic or non-syndromic forms, is the most common neurodevelopmental disorder. Although many cases are caused by single gene defects, ID is highly genetically heterogeneous. Biallelic variants in the transmembrane protein TMEM147 have recently been linked to intellectual disability with dysmorphic facial features. TMEM147 is believed to localize to the endoplasmic reticulum membrane and nuclear envelope and also involved in biogenesis of multi-pass membrane proteins. Here, we report two patients born to a consanguineous family with a novel loss-of-function variant; (NM_001242597.2:c.193-197del) in TMEM147 causing intellectual disability and spasticity. Whole exome sequencing and validating Sanger sequencing were utilized to confirm the identified causal variant. Our findings were in line with the previously described patients with TMEM147 variants manifesting intellectual disability as a major clinical sign but also featured spasticity as a phenotypic expansion. This study provides additional evidence for the pathogenicity of TMEM147 mutations in intellectual disability and expands the phenotypic and variant spectrum linked to this gene.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Linhagem , Transtornos do Neurodesenvolvimento/genética , Mutação , Proteínas de Membrana/genéticaRESUMO
Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicaçõesRESUMO
Background: Although the pathogenesis of Helicobacter pylori is well-defined, the origin and transmission of the bacterium have remained largely unknown. The water transmission hypothesis suggested that water acts as a carrier in oral-fecal transmission, especially in high-prevalence areas. We aimed to evaluate the possible contamination of tap water with infective H. pylori in Kermanshah, Iran from Sep-Oct 2020. Methods: Tap water samples were collected from varieties of probable high-alert regions and the viability of H. pylori were achieved using culture and real-time PCR techniques (ureA gene expression). Results: Out of 50 tap water samples, 3 were positive for H. pylori before enrichment and 6 were positive after enrichment by RT qPCR, while H. pylori colonies of two samples were observed on brucella agar plates. Conclusion: The results of positive samples demonstrated the probable presence of viable H. pylori in tap water samples, showing that tap water distribution systems could be a potential route for H. pylori transmission.
RESUMO
OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.
RESUMO
AGAP1 is an Arf1 GTPase-activating protein that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report three new cases in which individuals had microdeletion variants in AGAP1. The affected individuals had intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 variant-mediated neurodevelopmental impairments using the Drosophila ortholog CenG1a. We discovered reduced axon terminal size, increased neuronal endosome abundance and elevated autophagy compared to those in controls. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in the phosphorylation of the integrated stress-response protein eIF2α (or eIF2A) and inability to further increase eIF2α phosphorylation with subsequent cytotoxic stressors. CenG1a-mutant flies had increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response and leaving AGAP1-deficient cells susceptible to a variety of second-hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders.
Assuntos
Interação Gene-Ambiente , Deficiência Intelectual , Humanos , Endossomos , Deficiência Intelectual/genética , Proteínas Ativadoras de GTPaseRESUMO
PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.
Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Fenótipo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Excess copper (Cu) causes the toxic effects in plants and health hazards to humans. Therefore, in this study, the effect of sodium silicate (1 mM Si) and sodium nitroprusside (200 µM SNP as a releasing NO), was assessed on Cu tolerance in Salvia officinalis L. plants exposed to 400 µM CuSO4. Results revealed that the combined supplementation with Si and SNP rather than the single application of these chemicals lowered Cu concentrations and translocation factor and increased Mg, Zn, and Fe concentrations in roots and shoots. Furthermore, combined treatment more efficiently decreased electrolyte leakage enhanced the activities of POD and APX in the leaves and roots, and improved relative water content and the content of Chl. a and Chl. b in leaves and consequently further increased tolerance index. Silicon supply enhanced NO content and applying Si + SNP more than the treatment of Si alone increased Si concentrations in the roots and shoots under Cu stress. Therefore, the reciprocal interaction of Si and NO might enhance Cu tolerance in plants, and the combined application of Si and SNP might be a promising strategy to decrease heavy metal accumulation in medicinal plants grown in polluted lands.
In most studies, co-precipitation of silicon and heavy metals in medium has been suggested as a reason for reducing heavy metal uptake in plants. In this study, the impact of Si on NO generation and the role of NO signaling in regulating Cu uptake and translocation and defensive responses were assessed to clarify another mechanism of Si in inducing Cu tolerance in sage. Furthermore, the combined application of Si and SNP has been indicated as an innovative strategy to enhance Cu tolerance and decrease heavy metal accumulation in medicinal plants grown in polluted lands.
Assuntos
Cobre , Salvia officinalis , Humanos , Cobre/toxicidade , Óxido Nítrico/farmacologia , Silício/farmacologia , Biodegradação Ambiental , Antioxidantes/farmacologia , Raízes de PlantasRESUMO
AGAP1 is an Arf1 GAP that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report 3 new individuals with microdeletion variants in AGAP1 . Affected individuals have intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 neurodevelopmental impairments using the Drosophila ortholog, CenG1a . We discovered reduced axon terminal size, increased neuronal endosome abundance, and elevated autophagy at baseline. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in phosphorylation of the integrated stress-response protein eIF2α and inability to further increase eIF2α-P with subsequent cytotoxic stressors. CenG1a -mutant flies have increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response, and leaving AGAP1-deficient cells susceptible to a variety of second hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders. Summary statement: We describe 3 additional patients with heterozygous AGAP1 deletion variants and use a loss of function Drosophila model to identify defects in synaptic morphology with increased endosomal sequestration, chronic autophagy induction, basal activation of eIF2α-P, and sensitivity to environmental stressors.
RESUMO
CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.