RESUMO
This study aimed to highlight the molecular and biochemical changes induced by methylglyoxal (MGO) exposure in SH-SY5Y human neuroblastoma cells, and to explore how these changes contribute to its neurotoxicity, utilizing an integrated proteomics and metabolomics approach. Using label-free quantitative nanoLC-MS/MS proteomics and targeted LC-TQ-MS/MS-based metabolomics, the results revealed that MGO exposure, particularly at cytotoxic levels, significantly altered the proteome and metabolome of SH-SY5Y cells. Analysis of proteomics data showed significant alterations in cellular functions including protein synthesis, cellular structural integrity, mitochondrial function, and oxidative stress responses. Analysis of metabolomics and integration of metabolomics and proteomics data highlighted significant changes in key metabolic pathways including arginine biosynthesis, glutathione metabolism, cysteine and methionine metabolism, and the tricarboxylic acid cycle. These results suggest that MGO exposure induced both toxic effects and adaptive responses in cells. MGO exposure led to increased endoplasmic reticulum stress, disruptions in cellular adhesion and extracellular matrix integrity, mitochondrial dysfunction, and amino acid metabolism disruption, contributing to cellular toxicity. Conversely, cells exhibited adaptive responses by upregulating protein synthesis, activating the Nrf2 pathway, and reprogramming metabolism to counteract dicarbonyl stress and maintain energy levels. Furthermore, a set of key proteins and metabolites associated with these changes were shown to exhibit a significant concentration-dependent decrease or increase in their expression levels with increasing MGO concentrations, suggesting their potential as biomarkers for MGO exposure. Taken together, these findings provide insight into the molecular mechanisms underlying MGO-induced neurotoxicity and potential targets for therapeutic intervention.
RESUMO
Dermal allyl isothiocyanate (AITC) administration and whole-body heat stress (WBHS) are two challenge models that are used to evaluate physiological mechanisms of vasodilation and pharmacological activity in humans. Their exact vasodilatory mechanisms in humans are not fully elucidated but are likely to be nitric oxide (NO)-mediated. This study aimed to evaluate whether there is overlap in the vasodilatory pathways of dermal AITC application and WBHS by combining the challenges. In this open-label interventional study, healthy volunteers underwent dermal administration of AITC twice: under basal conditions and during WBHS. Dermal blood flow (DBF) was non-invasively measured using laser speckle contrast imaging four times, once in each of the following situations: baseline, WBHS only, AITC only, and WBHS combined with AITC. A total of 12 male volunteers, aged 18-61 years, participated in the study. Compared to baseline, following AITC application, their DBF increased by 63.43 AU (baseline: 32.55, 95% CI [17.78, 47.31] AU, AITC only: 95.97, 95% CI [81.21, 110.7] AU, p < 0.0001). During WBHS, the increase in DBF after AITC was 42.76 AU (WBHS only: 87.25, 95% CI [72.49, 102.0] AU, WBHS+AITC: 130.0, 95% CI [115.2, 144.8] AU, p < 0.0001). The combination of WBHS and AITC resulted in a lower DBF than the sum of the DBF responses to AITC and WBHS when applied separately (ED 20.67, 95% CI [-3.532, 44.88], p = 0.0916). This might point towards the presence of an interaction in the vasodilatory mechanism of AITC application and WBHS, possibly indicating overlap in their NOS-driven vasodilatory pathways.
RESUMO
Objective: Prolonged labor is the commonest indication for intrapartum cesarean section, but definitions are inconsistent and some common definitions were recently found to overestimate the speed of physiological labor. The objective of this review is to establish an overview of synonyms and definitions used in the literature for prolonged labor, separated into first and second stages, and establish types of definitions used. Data sources: A systematic search was conducted in PubMed, Embase, Web of Science, Cochrane Library, Emcare, and Academic Search Premier. Study eligibility criteria: All articles in English that (1) attempted to define prolonged labor, (2) included a definition of prolonged labor, or (3) included any synonym for prolonged labor, were included. Methods: Data on study design, year of publication, country or region of origin, synonyms used, definition of prolonged first and/or second stage, and origin of provided definition (if not primarily established by the study) were collected into a database. Results: In total, 3402 abstracts and 536 full-text papers were screened, and 232 papers were included. Our search established 53 synonyms for prolonged labor. Forty-three studies defined prolonged labor and 189 studies adopted a definition of prolonged labor. Definitions for prolonged first stage of labor were categorized into: time-based (n=14), progress-based (n=12), clinician-based (n=5), or outcome-based (n=4). For the 33 studies defining prolonged second stage, the majority of definitions (n=25) were time-based, either based on total duration or duration of no descent of the presenting part. Conclusions: Despite efforts to arrive at uniform labor curves, there is still little uniformity in definitions of prolonged labor. Consensus on which definition to use is called for, in order to safely and respectfully allow physiological labor progress, ensure timely management, and assess and compare incidence of prolonged labor between settings.
RESUMO
Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products, is endogenously produced and prevalent in various food products. This study aimed to characterize protein modifications in SH-SY5Y human neuroblastoma cells induced by MGO and identify potential biomarkers for its exposure and toxicity. A shot-gun proteomic analysis was applied to characterize protein modifications in cells incubated with and without exogenous MGO. Seventy-seven proteins were identified as highly susceptible to MGO modification, among which eight, including vimentin and histone H2B type 2-F, showing concentration-dependent modifications by externally added MGO, were defined as biomarkers for exogenous MGO exposure. Remarkably, up to 10 modification sites were identified on vimentin. Myosin light polypeptide 6 emerged as a biomarker for MGO toxicity, with modifications exclusively observed under cytotoxic MGO levels. Additionally, proteins like serine/threonine-protein kinase SIK2 and calcyphosin, exhibiting comparable or even higher modification levels in control compared to exogenous MGO-treated cells, were defined as biomarkers for endogenous exposure. Bioinformatics analysis revealed that motor proteins, cytoskeleton components, and glycolysis proteins were overrepresented among those highly susceptible to MGO modification. These results identify biomarkers for both endogenous and exogenous MGO exposure and provide insights into the cellular effects of endogenously formed versus externally added MGO.
Assuntos
Neuroblastoma , Proteômica , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/toxicidade , Proteômica/métodos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Produtos Finais de Glicação Avançada/metabolismo , Biomarcadores/metabolismo , Proteoma/metabolismoRESUMO
This study aimed to better understand whether and how the reactive 1,2-dicarbonyl precursors of advanced glycation end products (AGEs), glyoxal (GO) and methylglyoxal (MGO), cross the intestinal barrier by studying their transport in the in vitro Caco-2 transwell system. The results reveal that GO, MGO and Nε-(carboxymethyl)lysine (CML), the latter studied for comparison, are transported across the intestinal cell layer via both active and passive transport and accumulate in the cells, albeit all to a limited extent. Besides, the transport of the dicarbonyl compounds was only partially affected by the presence of amino acids and protein, suggesting that scavenging by a food matrix will not fully prevent their intestinal absorption. Our study provides new insights into the absorption of the two major food-borne dicarbonyl AGE precursors and provides evidence of their potential systemic bioavailability but also of factors limiting their contribution to the overall exposome.
Assuntos
Produtos Finais de Glicação Avançada , Glioxal , Aldeído Pirúvico , Humanos , Células CACO-2 , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/química , Aldeído Pirúvico/metabolismo , Glioxal/metabolismo , Glioxal/química , Modelos Biológicos , Transporte Biológico , Absorção IntestinalRESUMO
During early lactation, dairy cows have a negative energy balance since their energy demands exceed their energy intake: in this study, we aimed to investigate the association between diet and plasma metabolomics profiles and how these relate to energy unbalance of course in the early-lactation stage. Holstein-Friesian cows were randomly assigned to a glucogenic (n = 15) or lipogenic (n = 15) diet in early lactation. Blood was collected in week 2 and week 4 after calving. Plasma metabolite profiles were detected using liquid chromatography-mass spectrometry (LC-MS), and a total of 39 metabolites were identified. Two plasma metabolomic profiles were available every week for each cow. Metabolite abundance and metabolite ratios were used for the analysis using the XGboost algorithm to discriminate between diet treatment and lactation week. Using metabolite ratios resulted in better discrimination performance compared with the metabolite abundances in assigning cows to a lipogenic diet or a glucogenic diet. The quality of the discrimination of performance of lipogenic diet and glucogenic diet effects improved from 0.606 to 0.753 and from 0.696 to 0.842 in week 2 and week 4 (as measured by area under the curve, AUC), when the metabolite abundance ratios were used instead of abundances. The top discriminating ratios for diet were the ratio of arginine to tyrosine and the ratio of aspartic acid to valine in week 2 and week 4, respectively. For cows fed the lipogenic diet, choline and the ratio of creatinine to tryptophan were top features to discriminate cows in week 2 vs. week 4. For cows fed the glucogenic diet, methionine and the ratio of 4-hydroxyproline to choline were top features to discriminate dietary effects in week 2 or week 4. This study shows the added value of using metabolite abundance ratios to discriminate between lipogenic and glucogenic diet and lactation weeks in early-lactation cows when using metabolomics data. The application of this research will help to accurately regulate the nutrition of lactating dairy cows and promote sustainable agricultural development.
RESUMO
The nematode Caenorhabditis elegans is a valuable model for ecotoxicological research, yet limited attention has been given to understanding how it absorbs, distributes, metabolizes, and excretes chemicals. This is crucial for C. elegans because the organism is known to have strong uptake barriers that are known to be susceptible to potential confounding effects of the presence of Escherichia coli as a food source. One frequently studied compound in C. elegans is the antidepressant fluoxetine, which has an active metabolite norfluoxetine. In this study, we evaluated the toxicokinetics and relative potency of norfluoxetine and fluoxetine in chemotaxis and activity tests. Toxicokinetics experiments were conducted with varying times, concentrations of fluoxetine, and in the absence or presence of E. coli, simulated with a one-compartment model. Our findings demonstrate that C. elegans can take up fluoxetine and convert it into norfluoxetine. Norfluoxetine proved slightly more potent and had a longer elimination half-life. The bioconcentration factor, uptake, and elimination rate constants depended on exposure levels, duration, and the presence of E. coli in the exposure medium. These findings expand our understanding of toxicokinetic modeling in C. elegans for different exposure scenarios, underlining the importance of considering norfluoxetine formation in exposure and bioactivity assessments of fluoxetine.
RESUMO
This study aimed to characterize the methylglyoxal (MGO) scavenging capacity of glutathione (GSH) and kaempferol in more detail with special emphasis on the possible reversible nature of the adduct formation and their competition for MGO, and the safety consequences of their MGO-scavenging effects. GSH showed immediate and concentration-dependent MGO-scavenging effects, while the scavenging effects by kaempferol appeared concentration- but also time-dependent, with stable adducts formed over time. The GSH adduct gradually disappeared in a competition reaction with kaempferol, and kaempferol became the preferred scavenger over time. Furthermore, the scavenging of MGO by kaempferol provided better protection than GSH against extracellular MGO in SH-SY5Y cells. It is concluded that flavonoids like kaempferol provide better scavengers for food-borne MGO than thiol-based scavengers such as GSH, while, given the endogenous concentrations of both scavengers and the detoxification of the GSH-MGO adduct by the glyoxalase system, GSH will be dominant for intracellular MGO protection.
RESUMO
The fungal secondary metabolite deoxynivalenol (DON) that can contaminate cereal-based food products not only induces inflammation but also reduces bile acid absorption by a healthy human intestine. Bile acid malabsorption is commonly observed in individuals with an inflamed intestine. Here we studied the effects of DON on inflammation and primary bile acid transport using an in vitro model for an inflamed intestine. An inflamed intestinal in vitro model was established by co-culturing a Caco-2 cell-layer and LPS-pre-stimulated THP-1 macrophages in Transwells. We observed a decreased transport of 5 primary bile acids across inflamed co-cultures compared to healthy co-cultures but not of chenodeoxycholic acid. DON exposure further reduced the transport of the affected primary bile acids across the inflamed co-cultures. DON exposure also enhanced the secretion of pro-inflammatory cytokines in the inflamed co-cultures, while it did not increase the pro-inflammatory cytokines secretion from LPS-pre-stimulated THP-1 monocultures. Exposure of Caco-2 cell-layers to pro-inflammatory cytokines or THP-1 conditioned media partly mimicked the DON-induced effects of the co-culture model. Local activation of intestinal immune cells reinforces the direct pro-inflammatory effects of DON on intestinal epithelial cells. This affects the bile acid intestinal kinetics in an inflamed intestine.
Assuntos
Intestinos , Lipopolissacarídeos , Humanos , Técnicas de Cocultura , Células CACO-2 , Lipopolissacarídeos/efeitos adversos , Citocinas/metabolismo , Inflamação/induzido quimicamente , Ácidos e Sais BiliaresRESUMO
Purpurin is a major anthraquinone present in the roots of Rubia cordifolia (madder). Purpurin is known to activate Nrf2 (Nuclear transcription factor erythroid 2-related factor 2) EpRE (electrophile responsive element) mediated gene expression as a potential beneficial effect. This study aimed to elucidate the balance between the electrophilicity or pro-oxidant activity of purpurin underlying the Nrf2 induction. For this, Nrf2 activation with modified intracellular glutathione (GSH) levels was measured in an Nrf2 CALUX reporter gene assay. In addition, both cell-free and intracellular ROS formation of purpurin with modified (intracellular) GSH levels at different pH were quantified using the DCF-DA assay. GSH adduct formation was evaluated by UPLC and LC-TOF-MS analysis. GSH and GSSG levels following purpurin incubations were quantified by LC-MS/MS. We show that Nrf2 induction by purpurin was significantly increased in cells with buthionine sulfoximine depleted GSH levels, while Nrf2 induction was decreased upon incubation of the cells with N-acetylcysteine being a precursor of GSH. In cell-free incubations, ROS formation increased with increasing pH pointing at a role for the deprotonated form of purpurin. Upon incubations of purpurin with GSH at physiological pH, GSH adduct formation appeared negligible (<1.5% of the added purpurin). The addition of GSH resulted in conversion of GSH to GSSG and significantly reduced the ROS formation. Together these results demonstrate that Nrf2 induction by purpurin originates from intracellular ROS formation and not from its electrophilicity, which becomes especially relevant when intracellular GSH levels can no longer scavenge the ROS. The present study demonstrated that the efficiency of intracellular Nrf2 activation by purpurin and related anthraquinones will depend on (i) their pKa and level of deprotonation at the intracellular pH, (ii) the oxidation potential of their deprotonated form and (iii) the intracellular GSH levels. Thus, the Nrf2 induction by purpurin depends on its pro-oxidant activity and not on its electrophilicity.
RESUMO
The trichothecene toxin deoxynivalenol (DON) is a ribotoxic mycotoxin that contaminates cereal-based food. DON binds to ribosomes, thereby inhibiting protein translation and activating stress mitogen-activated protein kinases (MAPK). The activation of MAPK induces pro-inflammatory cytokine production. Emerging evidence showed that DON decreased bile acid reabsorption and apical sodium-dependent bile acid transporter (ASBT) expression in Caco-2 cell layers. We hypothesized that the effect of DON on decreased ASBT mRNA expression is regulated via pro-inflammatory cytokines. We observed that MAPK inhibitors prevented DON to induce IL-8 secretion and prevented the DON-induced downregulation of ASBT mRNA expression. However, DON-induced taurocholic acid (TCA) transport reduction was not prevent by the MAPK inhibitors. We next observed a similarity between the activity of the non-inflammatory ribotoxin cycloheximide and DON to decrease TCA transport, which is consistent with their common ability to inhibit protein synthesis. Together, our results suggest that DON-induced TCA malabsorption is regulated by MAPK activation-induced pro-inflammatory cytokine production and protein synthesis inhibition, both of which are initiated by DON binding to the ribosomes which therefore is the molecular initiating event for the adverse outcome of bile acid malabsorption. This study provides insights into the mechanism of ribotoxins-induced bile acid malabsorption in human intestine.
Assuntos
Intestinos , Proteínas Quinases Ativadas por Mitógeno , Humanos , Células CACO-2 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Citocinas/genética , RNA Mensageiro/metabolismoRESUMO
Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 µM, 1.1 µM, 23 µM and 2.3 µM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 µM, 15 µM, 9.8 µM and 3.8 µM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.
Assuntos
Emodina , Medicina Tradicional Chinesa , Fator 2 Relacionado a NF-E2/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Expressão GênicaRESUMO
Bile acid metabolism and transport are critical to maintain bile acid homeostasis and host health. In this study, it was investigated if effects on intestinal bile acid deconjugation and transport can be quantified in vitro model systems using mixtures of bile acids instead of studying individual bile acids. To this end deconjugation of mixtures of selected bile acids in anaerobic rat or human fecal incubations and the effect of the antibiotic tobramycin on these reactions was studied. In addition, the effect of tobramycin on the transport of the bile acids in isolation or in a mixture across Caco-2 cell layers was characterized. The results demonstrate that both the reduction of bile acid deconjugation and transport by tobramycin can be adequately detected in vitro systems using a mixture of bile acids, thus eliminating the need to characterize the effects for each bile acid in separate experiments. Subtle differences between the experiments with single or combined bile acids point at mutual competitive interactions and indicate that the use of bile acid mixtures is preferred over use of single bile acid given that also in vivo bile acids occurs in mixtures.
Assuntos
Ácidos e Sais Biliares , Intestinos , Ratos , Humanos , Animais , Células CACO-2 , Fezes , HomeostaseRESUMO
The advanced glycation endproduct carboxymethyllysine and its precursor fructoselysine are present in heated, processed food products and are considered potentially hazardous for human health. Upon dietary exposure, they can be degraded by human colonic gut microbiota, reducing internal exposure. Pronounced interindividual and intraindividual differences in these metabolic degradations were found in anaerobic incubations with human fecal slurries in vitro. The average capacity to degrade fructoselysine was 27.7-fold higher than that for carboxymethyllysine, and degradation capacities for these two compounds were not correlated (R2 = 0.08). Analysis of the bacterial composition revealed that interindividual differences outweighed intraindividual differences, and multiple genera were correlated with the individuals' carboxymethyllysine and fructoselysine degradation capacities (e.g., Akkermansia, Alistipes).
Assuntos
Microbioma Gastrointestinal , Fezes/microbiologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , RNA Ribossômico 16SRESUMO
Bile acid homeostasis plays an important role in many biological activities through the bile-liver-gut axis. In this study, two in vitro models were applied to further elucidate the mode of action underlying reported in vivo bile acid changes induced by antibiotics (colistin sulfate, tobramycin, meropenem trihydrate, and doripenem hydrate). 16S rRNA analysis of rat fecal samples anaerobically incubated with these antibiotics showed that especially tobramycin induced changes in the gut microbiota. Furthermore, tobramycin was shown to inhibit the microbial deconjugation of taurocholic acid (TCA) and the transport of TCA over an in vitro Caco-2 cell layer used as a model to mimic intestinal bile acid reuptake. The effects induced by the antibiotics in the in vitro model systems provide novel and complementary insight explaining the effects of the antibiotics on microbiota and fecal bile acid levels upon 28-day in vivo treatment of rats. In particular, our results provide insight in the mode(s) of action underlying the increased levels of TCA in the feces upon tobramycin exposure. Altogether, the results of the present study provide a proof-of-principle on how in vitro models can be used to elucidate in vivo effects on bile acid homeostasis, and to obtain insight in the mode(s) of action underlying the effect of an antibiotic, in this case tobramycin, on bile acid homeostasis via effects on intestinal bile acid metabolism and reuptake.
Assuntos
Antibacterianos , Ácidos e Sais Biliares , Humanos , Ratos , Animais , RNA Ribossômico 16S , Antibacterianos/toxicidade , Colistina , Meropeném , Doripenem , Células CACO-2 , Ácido Taurocólico , Tobramicina/farmacologiaRESUMO
Reliable hepatic in vitro systems are crucial for the safety assessment of xenobiotics. Certain xenobiotics decrease the hepatic bile efflux, which can ultimately result in cholestasis. Preclinical animal models and the currently available in vitro systems poorly predict a xenobiotic's cholestatic potential. Here, we compared the phenotype and capacity of three liver derived in vitro systems to emulate human functionality to synthesize and secrete bile acids (BAs). To this end, basal BA production of sandwich cultured human hepatocytes (SCHHs), HepaRG cells (HepaRGs) and hepatocyte-like intrahepatic cholangiocyte organoids (ICO-heps) were analysed, and the effect of the known BSEP (Bile Salt Export Pump)-inhibitors bosentan and lopinavir on BA disposition in SCHHs and HepaRGs was quantified. RT-qPCR of selected target genes involved in maturation status, synthesis, transport and conjugation of BAs was performed to mechanistically underpin the observed differences in BA homeostasis. ICO-heps produced a (very) low amount of BAs. SCHHs are a powerful tool in cholestasis-testing due to their high basal BA production and high transporter expression compared to the other models tested. HepaRGs were responsive to both selected BSEP-inhibitors and produced a BA profile that is most similar to the human in vivo situation, making them a suitable and practical candidate for cholestasis-testing.
Assuntos
Colestase , Xenobióticos , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Hepatócitos , Fígado/metabolismo , Xenobióticos/metabolismoRESUMO
α-Dicarbonyl compounds, particularly methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are highly reactive precursors for the formation of advanced glycation end products (AGEs). They are formed in vivo and during food processing. This study aimed to investigate the role of intracellular glutathione (GSH) levels in the induction of Nrf2-mediated gene expression by α-dicarbonyl compounds. The reactions between α-dicarbonyl compounds (MGO, GO, and 3-DG) and GSH were studied by LC-MS in a cell-free system. It was shown that these three α-dicarbonyl compounds react instantaneously with GSH, with the GSH-mediated scavenging decreasing in the order MGO > GO > 3DG. Furthermore, in a cell-based reporter gene assay MGO, GO, and 3-DG were able to induce Nrf2-mediated gene expression in a dose-dependent manner. Modulation of intracellular GSH levels showed that the cytotoxicity and induction of the Nrf2-mediated pathway by MGO, GO and 3-DG was significantly enhanced by depletion of GSH, while a decrease in Nrf2-activation by MGO and GO but not 3-DG was observed upon an increase of the cellular GSH levels. Our results reveal subtle differences in the role of GSH in protection against the three typical α-dicarbonyl compounds and in their induction of Nrf2-mediated gene expression, and point at a dual biological effect of the α-dicarbonyl compounds, being reactive toxic electrophiles and -as a consequence- able to induce Nrf2-mediated protective gene expression, with MGO being most reactive.
Assuntos
Produtos Finais de Glicação Avançada , Fator 2 Relacionado a NF-E2 , Expressão Gênica , Glutationa , Glioxal/farmacologia , Óxido de Magnésio , Fator 2 Relacionado a NF-E2/genética , Aldeído PirúvicoRESUMO
Conjugated bile acids are synthesized in liver and subsequently secreted into the intestinal lumen from which they are actively reabsorbed and transported back to liver. The efficient enterohepatic circulation of conjugated bile acids is important to maintain homeostasis. The mycotoxin deoxynivalenol (DON) is a fungal secondary metabolite that contaminates cereal food. Upon human exposure, it can cause intestinal dysfunction. We explored the effects of DON exposure on the intestinal absorption of conjugated bile acids and the expression of bile acid transporters using an in vitro model based on Caco-2 cell layers grown in transwells. Our study shows that the transport rate of taurocholic acid (TCA) is decreased after 48-h pre-exposure of the Caco-2 cells to 2 µM DON, which is a realistic intestinal DON concentration. Exposure to DON downregulates expression of the genes coding for the apical sodium-dependent bile acid transporter (ASBT), the ileal bile acid-binding protein (IBABP) and the organic solute transporter α (OSTα), and it counteracts the agonist activity of Farnesoid X receptor (FXR) agonist GW4064 on these genes. In addition, the transport of ten taurine or glycine-conjugated bile acids in a physiological relevant mixture by the intestinal Caco-2 cell layers was decreased after pre-exposure of the cells to DON, pointing at a potential for DON-mediated accumulation of the conjugated bile acids at the intestinal luminal side. Together the results reveal that DON inhibits intestinal bile acid reabsorption by reducing the expression of bile acid transporters thereby affecting bile acid intestinal kinetics, leading to bile acid malabsorption in the intestine. Our study provides new insights into the hazards of DON exposure.
Assuntos
Micotoxinas , Ácidos e Sais Biliares , Células CACO-2 , Humanos , Intestinos , Micotoxinas/farmacologia , TricotecenosRESUMO
OBJECTIVE: Twin pregnancies have been shown to be associated with numerous maternal and perinatal complications. Published data shows conflicting reports on whether assisted conception influences these risks. The purpose of this study was to assess the impact of mode of conception on maternal and perinatal outcomes of dichorionic diamniotic twin pregnancies. STUDY DESIGN: This was a large retrospective study of 497 women with dichorionic diamniotic twins that were conceived spontaneously or with assisted conception in a single centre over a 10-year period. RESULTS: This study showed no significant difference in mode of delivery (OR 1.40 95% CI 0.88 - 2.24), need for admission to neonatal unit (OR 1.56 95% CI 0.88-2.77), or preterm births between dichorionic twin pregnancies conceived following assisted conception when compared to spontaneously conceived dichorionic twin pregnancies. Women who conceived twins by assisted conception that did not have an elective caesarean section were more likely to go into spontaneous labour than have an induction of labour (OR 0.54 95% CI 0.3 - 0.99). They also had a higher chance of having an estimated blood loss of more than 1L than women who conceived naturally (OR 1.70 95% CI 1.06 - 2.73). CONCLUSIONS: In the case of dichorionic twins, this study showed that assisted conception does not seem to be associated with adverse obstetric and perinatal outcomes when compared with spontaneous conception. These results should be considered reassuring to women undergoing assisted conception, and may assist clinicians when counselling patients for assisted conception treatment. Further research is needed to assess the impact of assisted conception on postpartum blood loss.
Assuntos
Cesárea , Resultado da Gravidez , Feminino , Fertilização , Humanos , Recém-Nascido , Gravidez , Resultado da Gravidez/epidemiologia , Gravidez de Gêmeos , Estudos RetrospectivosRESUMO
BACKGROUND: Caesarean sections without medical indication cause substantial maternal and perinatal ill-health, particularly in low-income countries where surgery is often less safe. In presence of adequate labour monitoring and by appropriate use of evidence-based interventions for prolonged first stage of labour, unnecessary caesarean sections can be avoided. We aim to describe the incidence of prolonged first stage of labour and the use of amniotomy and augmentation with oxytocin in a low-resource setting in Malawi. METHODS: Retrospective analysis of medical records and partographs of all women who gave birth in 2015 and 2016 in a rural mission hospital in Malawi. Primary outcomes were incidence of prolonged first stage of labour based on partograph tracings, caesarean section indications and utilization of amniotomy and oxytocin augmentation. RESULTS: Out of 3246 women who gave birth in the study period, 178 (5.2%) crossed the action line in the first stage of labour, of whom 21 (11.8%) received oxytocin to augment labour. In total, 645 women gave birth by caesarean section, of whom 241 (37.4%) with an indication 'prolonged first stage of labour'. Only 113 (46.9%) of them crossed the action line and in 71/241 (29.5%) membranes were still intact at the start of caesarean section. Excluding the 60 women with prior caesarean sections, 14/181 (7.7%) received oxytocin prior to caesarean section for augmentation of labour. CONCLUSION: The diagnosis prolonged first stage of labour was often made without being evident from labour tracings and two basic obstetric interventions to prevent caesarean section, amniotomy and labour augmentation with oxytocin, were underused.