Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Transl Med ; 20(1): 487, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284330

RESUMO

BACKGROUND: Catechol-O-methyltransferase (COMT) has been shown to influence clinical pain, descending modulation, and exercise-induced symptom worsening. COMT regulates nociceptive processing and inflammation, key pathophysiological features of Chronic Fatigue Syndrome and Fibromyalgia (CFS/FM). We aimed to determine the interactions between genetic and epigenetic mechanisms regulating COMT and its influence on inflammatory markers and symptoms in patients with CFS/FM. METHODS: A case-control study with repeated-measures design was used to reduce the chance of false positive and increase the power of our findings. Fifty-four participants (28 patients with CFS/FM and 26 controls) were assessed twice within 4 days. The assessment included clinical questionnaires, neurophysiological assessment (pain thresholds, temporal summation, and conditioned pain modulation), and blood withdrawal in order to assess rs4818, rs4633, and rs4680 COMT polymorphisms and perform haplotype estimation, DNA methylation in the COMT gene (both MB-COMT and S-COMT promoters), and cytokine expression (TNF-α, IFN-γ, IL-6, and TGF-ß). RESULTS: COMT haplotypes were associated with DNA methylation in the S-COMT promoter, TGF-ß expression, and symptoms. However, this was not specific for one condition. Significant between-group differences were found for increased DNA methylation in the MB-COMT promoter and decreased IFN-γ expression in patients. DISCUSSION: Our results are consistent with basic and clinical research, providing interesting insights into genetic-epigenetic regulatory mechanisms. MB-COMT DNA methylation might be an independent factor contributing to the pathophysiology of CFS/FM. Further research on DNA methylation in complex conditions such as CFS/FM is warranted. We recommend future research to employ a repeated-measure design to control for biomarkers variability and within-subject changes.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Humanos , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Fibromialgia/genética , Síndrome de Fadiga Crônica/genética , Estudos de Casos e Controles , Epigênese Genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Dor/genética , Inflamação/genética , Fator de Crescimento Transformador beta/metabolismo
2.
J Affect Disord ; 295: 505-512, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509065

RESUMO

BACKGROUND: Work-related stress and burnout have become major occupational health concerns. Dysregulation of HPA axis is considered one of the central mechanisms and is potentially moderated through epigenetics. In the present study, we aim to investigate epigenetic regulation of the HPA axis in burnout, by focusing on salivary cortisol and cortisone and DNA methylation of the glucocorticoid receptor gene (NR3C1) and the serotonin transporter gene (SLC6A4). METHODS: We conducted a cross-sectional study with 59 subjects with burnout and 70 healthy controls recruited from the general population. All participants underwent a clinical interview and psychological assessment. Saliva samples were collected at 0, 30 and 60 min after awakening and were used to quantify cortisol and cortisone. Pyrosequencing was performed on whole blood-derived DNA to assess DNA methylation. RESULTS: There were no between-group differences in cortisol levels, whereas burnout participants had higher levels of cortisone. Job stress was associated with increased cortisol and cortisone. We observed both increased and decreased NR3C1 and SLC6A4 methylation in the burnout group compared to the control group. Some of these methylation changes correlated with burnout symptoms dimensionally. Increased methylation in a specific CpG in the SLC6A4 promoter region moderated the association between job stress and burnout. DNA methylation in this CpG was also associated with increased cortisol. In addition, average methylation of NR3C1 was negatively associated with cortisone levels. LIMITATIONS: This is a cross-sectional study and therefore no conclusions on causality could be made. CONCLUSIONS: We provide first evidence of changes in DNA methylation of NR3C1 and SLC6A4 in burnout, which were further associated with cortisol and cortisone. Further, increased cortisol and cortisone seemed to reflect job stress rather than burnout itself.


Assuntos
Esgotamento Psicológico/genética , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Receptores de Glucocorticoides , Proteínas da Membrana Plasmática de Transporte de Serotonina , Estudos Transversais , Metilação de DNA/genética , Epigênese Genética , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
3.
Environ Int ; 146: 106205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189992

RESUMO

BACKGROUND: The World Health Organization (WHO) and the International Labour Organization (ILO) are developing Joint Estimates of the work-related burden of disease and injury (WHO/ILO Joint Estimates), with contributions from a large network of experts. Evidence from mechanistic data suggests that exposure to long working hours may increase alcohol consumption and cause alcohol use disorder. In this paper, we present a systematic review and meta-analysis of parameters for estimating the number of deaths and disability-adjusted life years from alcohol consumption and alcohol use disorder that are attributable to exposure to long working hours, for the development of the WHO/ILO Joint Estimates. OBJECTIVES: We aimed to systematically review and meta-analyse estimates of the effect of exposure to long working hours (three categories: 41-48, 49-54 and ≥55 h/week), compared with exposure to standard working hours (35-40 h/week), on alcohol consumption, risky drinking (three outcomes: prevalence, incidence and mortality) and alcohol use disorder (three outcomes: prevalence, incidence and mortality). DATA SOURCES: We developed and published a protocol, applying the Navigation Guide as an organizing systematic review framework where feasible. We searched electronic bibliographic databases for potentially relevant records from published and unpublished studies, including the WHO International Clinical Trials Register, Ovid MEDLINE, PubMed, Embase, and CISDOC on 30 June 2018. Searches on PubMed were updated on 18 April 2020. We also searched electronic grey literature databases, Internet search engines and organizational websites; hand-searched reference list of previous systematic reviews and included study records; and consulted additional experts. STUDY ELIGIBILITY AND CRITERIA: We included working-age (≥15 years) workers in the formal and informal economy in any WHO and/or ILO Member State but excluded children (<15 years) and unpaid domestic workers. We considered for inclusion randomized controlled trials, cohort studies, case-control studies and other non-randomized intervention studies with an estimate of the effect of exposure to long working hours (41-48, 49-54 and ≥55 h/week), compared with exposure to standard working hours (35-40 h/week), on alcohol consumption (in g/week), risky drinking, and alcohol use disorder (prevalence, incidence or mortality). STUDY APPRAISAL AND SYNTHESIS METHODS: At least two review authors independently screened titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from publications related to qualifying studies. Two or more review authors assessed the risk of bias, quality of evidence and strength of evidence, using Navigation Guide and GRADE tools and approaches adapted to this project. RESULTS: Fourteen cohort studies met the inclusion criteria, comprising a total of 104,599 participants (52,107 females) in six countries of three WHO regions (Americas, South-East Asia, and Europe). The exposure and outcome were assessed with self-reported measures in most studies. Across included studies, risk of bias was generally probably high, with risk judged high or probably high for detection bias and missing data for alcohol consumption and risky drinking. Compared to working 35-40 h/week, exposure to working 41-48 h/week increased alcohol consumption by 10.4 g/week (95% confidence interval (CI) 5.59-15.20; seven studies; 25,904 participants, I2 71%, low quality evidence). Exposure to working 49-54 h/week increased alcohol consumption by 17.69 g/week (95% confidence interval (CI) 9.16-26.22; seven studies, 19,158 participants, I2 82%, low quality evidence). Exposure to working ≥55 h/week increased alcohol consumption by 16.29 g/week (95% confidence interval (CI) 7.93-24.65; seven studies; 19,692 participants; I2 82%, low quality evidence). We are uncertain about the effect of exposure to working 41-48 h/week, compared with working 35-40 h/week on developing risky drinking (relative risk 1.08; 95% CI 0.86-1.36; 12 studies; I2 52%, low certainty evidence). Working 49-54 h/week did not increase the risk of developing risky drinking (relative risk 1.12; 95% CI 0.90-1.39; 12 studies; 3832 participants; I2 24%, moderate certainty evidence), nor working ≥55 h/week (relative risk 1.11; 95% CI 0.95-1.30; 12 studies; 4525 participants; I2 0%, moderate certainty evidence). Subgroup analyses indicated that age may influence the association between long working hours and both alcohol consumption and risky drinking. We did not identify studies for which we had access to results on alcohol use disorder. CONCLUSIONS: Overall, for alcohol consumption in g/week and for risky drinking, we judged this body of evidence to be of low certainty. Exposure to long working hours may have increased alcohol consumption, but we are uncertain about the effect on risky drinking. We found no eligible studies on the effect on alcohol use disorder. Producing estimates for the burden of alcohol use disorder attributable to exposure to long working hours appears to not be evidence-based at this time. PROTOCOL IDENTIFIER: https://doi.org/10.1016/j.envint.2018.07.025. PROSPERO REGISTRATION NUMBER: CRD42018084077.


Assuntos
Alcoolismo , Doenças Profissionais , Exposição Ocupacional , Adolescente , Consumo de Bebidas Alcoólicas/epidemiologia , Alcoolismo/epidemiologia , Efeitos Psicossociais da Doença , Europa (Continente) , Feminino , Humanos , Organização Mundial da Saúde
4.
Neurobiol Stress ; 13: 100272, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344725

RESUMO

BACKGROUND: Epigenetic changes are considered the main mechanisms behind the interplay of environment and genetic susceptibility in major depressive disorder (MDD). However, studies focusing on epigenetic dysregulation of the HPA axis stress response in MDD are lacking. Our objective was to simultaneously asses DNA methylation of the glucocorticoid receptor gene (NR3C1) and serotonin transporter gene (SLC6A4) and HPA axis response to stress in MDD. METHODS: We recruited 80 depressed inpatients and 58 gender and age matched healthy controls. All participants underwent the Trier Social Stress Test (TSST) and salivary cortisol was repeatedly measured to assess HPA axis reactivity. DNA methylation of the NR3C1 (exon 1 F) and SLC6A4 CpG islands was quantified from whole blood DNA. In the MDD group, clinical assessment was repeated at 8-week follow-up to test the predictive potential of DNA methylation for symptom improvement. RESULTS: Depressed patients had blunted cortisol reactivity to TSST compared to healthy controls (p = 0.01). In addition, they presented with increased average SLC6A4 (p = 0.003) and NR3C1 methylation (p = 0.03), as well as methylation of two individual NR3C1 CpG loci overlapping with the NGFI-A-binding sites (CpG12 and CpG20). Methylation of one of these two loci (CpG20) predicted lower symptom improvement at the follow-up (p = 0.007). Both, average NR3C1 and SLC6A4 methylation were associated with lower cortisol reactivity in the MDD group and explained about 16% of variability in cortisol response to TSST. CONCLUSIONS: We provide evidence of the role of NR3C1 and SLC6A4 DNA methylation in HPA axis dysregulation in MDD, which needs to be further explored.

5.
Transl Psychiatry ; 10(1): 354, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077716

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a potential role in the neurobiology of burnout, but there are no studies investigating the underlying genetic and epigenetic mechanisms. Our aim is to further explore the role of BDNF in burnout, by focusing on the Val66Met polymorphism and methylation patterns of the BDNF gene and serum BDNF (sBDNF) protein expression. We conducted a cross-sectional study by recruiting 129 individuals (59 with burnout and 70 healthy controls). Participants underwent a clinical interview, psychological assessment and blood sample collection. Polymorphism and DNA methylation were measured on DNA from whole blood, using pyrosequencing and sBDNF levels were measured using ELISA. We found significantly increased methylation of promoter I and IV in the burnout group, which also correlated with burnout symptoms. In addition, DNA methylation of promoter I had a significant negative effect on sBDNF. For DNA methylation of exon IX, we did not find a significant difference between the groups, nor associations with sBDNF. The Val66Met polymorphism neither differed between groups, nor was it associated with sBDNF levels. Finally, we did not observe differences in sBDNF level between the groups. Interestingly, we observed a significant negative association between depressive symptoms and sBDNF levels. The current study is the first to show that BDNF DNA methylation changes might play an important role in downregulation of the BDNF protein levels in burnout. The presence of depressive symptoms might have an additional impact on these changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Esgotamento Psicológico , Metilação de DNA , Epigênese Genética , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos Transversais , Humanos
6.
Arthritis Rheumatol ; 72(11): 1936-1944, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32562379

RESUMO

OBJECTIVE: The epigenetics of neurotrophic factors holds the potential to unravel the mechanisms underlying the pathophysiology of complex conditions such as chronic fatigue syndrome (CFS). This study was undertaken to explore the role of brain-derived neurotrophic factor (BDNF) genetics, epigenetics, and protein expression in patients with both CFS and comorbid fibromyalgia (CFS/FM). METHODS: A repeated-measures study was conducted in 54 participants (28 patients with CFS/FM and 26 matched healthy controls). Participants underwent a comprehensive assessment, including questionnaires, sensory testing, and blood withdrawal. Serum BDNF (sBDNF) protein levels were measured using enzyme-linked immunosorbent assay, while polymorphism and DNA methylation were measured in blood using pyrosequencing technology. To assess the temporal stability of the measures, participants underwent the same assessment twice within 4 days. RESULTS: Repeated-measures mixed linear models were used for between-group analysis, with mean differences and 95% confidence intervals (95% CIs) shown. Compared to controls, serum BNDF was higher in patients with CFS/FM (F = 15.703; mean difference 3.31 ng/ml [95% CI 1.65, 4.96]; P = 0.001), whereas BDNF DNA methylation in exon 9 was lower (F = 7.543; mean difference -2.16% [95% CI -3.93, -0.83]; P = 0.007). BDNF DNA methylation was mediated by the Val66Met (rs6265) polymorphism. Lower methylation in the same region predicted higher sBDNF levels (F = 7.137, ß = -0.408 [95% CI -0.711, -0.105]; P = 0.009), which in turn predicted participants' symptoms (F = 14.410, ß = 3.747 [95% CI 1.79, 5.71]; P = 0.001) and widespread hyperalgesia (F = 4.147, ß = 0.04 [95% CI 0.01, 0.08]; P = 0.044). CONCLUSION: Our findings indicate that sBDNF levels are elevated in patients with CFS/FM and that BDNF methylation in exon 9 accounts for the regulation of protein expression. Altered BDNF levels might represent a key mechanism explaining CFS/FM pathophysiology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Metilação de DNA , Síndrome de Fadiga Crônica/metabolismo , Fibromialgia/metabolismo , Hiperalgesia/metabolismo , Adulto , Síndrome de Fadiga Crônica/complicações , Síndrome de Fadiga Crônica/fisiopatologia , Feminino , Fibromialgia/complicações , Fibromialgia/fisiopatologia , Humanos , Hiperalgesia/complicações , Hiperalgesia/fisiopatologia , Pessoa de Meia-Idade , Medição da Dor
8.
Sci Rep ; 9(1): 19313, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848390

RESUMO

There is a growing interest concerning the relevance of salivary cortisone levels in stress-related research. However, studies investigating morning patterns and day-to-day variability of cortisone versus cortisol levels are lacking. Cortisol and cortisone analysis by liquid chromatography-tandem mass spectroscopy (LC-MS/MS) has been widely used for routine laboratory measurements in the last years. The aim of this study was to develop an ultra-performance LC-MS/MS method for the simultaneous quantification of salivary cortisol and cortisone levels for assessing the temporal variability of these hormones. Saliva samples were collected from 18 healthy volunteers at 0, 15, and 30 min after awakening on each day for 1 week and analysed with the newly developed method. We used a novel atmospheric pressure ionization source, which resulted in high sensitivity and specificity for both cortisol and cortisone as well as higher peak values and signal-to-noise ratio as compared with the electrospray ionization source. Cortisone showed similar morning patterns as cortisol: a 25% and 49% increase in levels at 15 and 30 min after awakening, respectively. Most cortisone indices showed somewhat lower day-to-day variability and were less affected by state-related covariates. We recommend further exploration of the potential of salivary cortisone as a biomarker in stress-related research.


Assuntos
Cromatografia Líquida/métodos , Cortisona/isolamento & purificação , Hidrocortisona/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Adulto , Pressão Atmosférica , Cortisona/química , Voluntários Saudáveis , Humanos , Hidrocortisona/química , Saliva/química , Estresse Fisiológico/fisiologia , Adulto Jovem
9.
J Psychosom Res ; 104: 55-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29275786

RESUMO

OBJECTIVE: Although the precise mechanisms are not yet understood, previous studies have suggested that chronic fatigue syndrome (CFS) is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and trauma in early childhood. Consistent with findings suggesting that early life stress-induced DNA methylation changes may underlie dysregulation of the HPA axis, we previously found evidence for the involvement of glucocorticoid receptor (GR) gene (NR3C1) methylation in whole blood of CFS patients. METHODS: In the current study, we assessed NR3C1-1F region DNA methylation status in peripheral blood from a new and independent sample of 80 female CFS patients and 91 female controls. In CFS patients, history of childhood trauma subtypes was evaluated using the Childhood Trauma Questionnaire short form (CTQ-SF). RESULTS: Although absolute methylation differences were small, the present study confirms our previous findings of NR3C1-1F DNA hypomethylation at several CpG sites in CFS patients as compared to controls. Following multiple testing correction, only CpG_8 remained significant (DNA methylation difference: 1.3% versus 1.5%, p<0.001). In addition, we found associations between DNA methylation and severity of fatigue as well as with childhood emotional abuse in CFS patients, although these findings were not significant after correction for multiple testing. CONCLUSIONS: In conclusion, we replicated findings of NR3C1-1F DNA hypomethylation in CFS patients versus controls. Our results support the hypothesis of HPA axis dysregulation and enhanced GR sensitivity in CFS.


Assuntos
Metilação de DNA , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/psicologia , Trauma Psicológico , Receptores de Glucocorticoides/genética , Adulto , Criança , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/fisiopatologia , Feminino , Humanos , Hipotálamo/fisiopatologia , Masculino , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Glucocorticoides/sangue
10.
J Psychosom Res ; 92: 34-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998510

RESUMO

Despite that burnout presents a serious burden for modern society, there are no diagnostic criteria. Additional difficulty is the differential diagnosis with depression. Consequently, there is a need to dispose of a burnout biomarker. Epigenetic studies suggest that DNA methylation is a possible mediator linking individual response to stress and psychopathology and could be considered as a potential biomarker of stress-related mental disorders. Thus, the aim of this review is to provide an overview of DNA methylation mechanisms in stress, burnout and depression. In addition to state-of-the-art overview, the goal of this review is to provide a scientific base for burnout biomarker research. We performed a systematic literature search and identified 25 pertinent articles. Among these, 15 focused on depression, 7 on chronic stress and only 3 on work stress/burnout. Three epigenome-wide studies were identified and the majority of studies used the candidate-gene approach, assessing 12 different genes. The glucocorticoid receptor gene (NR3C1) displayed different methylation patterns in chronic stress and depression. The serotonin transporter gene (SLC6A4) methylation was similarly affected in stress, depression and burnout. Work-related stress and depressive symptoms were associated with different methylation patterns of the brain derived neurotrophic factor gene (BDNF) in the same human sample. The tyrosine hydroxylase (TH) methylation was correlated with work stress in a single study. Additional, thoroughly designed longitudinal studies are necessary for revealing the cause-effect relationship of work stress, epigenetics and burnout, including its overlap with depression.


Assuntos
Esgotamento Profissional/genética , Metilação de DNA , Depressão/genética , Estresse Psicológico/genética , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA