Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(1): 269-288, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36493777

RESUMO

Following acute genotoxic stress, both normal and tumorous stem cells can undergo cell-cycle arrest to avoid apoptosis and later re-enter the cell cycle to regenerate daughter cells. However, the mechanism of protective, reversible proliferative arrest, "quiescence," remains unresolved. Here, we show that mitophagy is a prerequisite for reversible quiescence in both irradiated Drosophila germline stem cells (GSCs) and human induced pluripotent stem cells (hiPSCs). In GSCs, mitofission (Drp1) or mitophagy (Pink1/Parkin) genes are essential to enter quiescence, whereas mitochondrial biogenesis (PGC1α) or fusion (Mfn2) genes are crucial for exiting quiescence. Furthermore, mitophagy-dependent quiescence lies downstream of mTOR- and PRC2-mediated repression and relies on the mitochondrial pool of cyclin E. Mitophagy-dependent reduction of cyclin E in GSCs and in hiPSCs during mTOR inhibition prevents the usual G1/S transition, pushing the cells toward reversible quiescence (G0). This alternative method of G1/S control may present new opportunities for therapeutic purposes.


Assuntos
Proteínas de Drosophila , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Mitofagia/genética , Ciclina E/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Drosophila/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Serina-Treonina Quinases TOR , Células Germinativas/metabolismo , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Drosophila/genética
2.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230891

RESUMO

Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.


Assuntos
Cervos , Diapausa , MicroRNAs , Neoplasias , Animais , Blastocisto/metabolismo , Diapausa/fisiologia , Desenvolvimento Embrionário/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA