Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Clin Oncol ; 42(16): 1961-1974, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608213

RESUMO

Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Humanos , Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias Encefálicas/líquido cefalorraquidiano , Proteômica/métodos , Proteômica/normas , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/diagnóstico
2.
N Engl J Med ; 390(14): 1290-1298, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38477966

RESUMO

In this first-in-human, investigator-initiated, open-label study, three participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells, which are chimeric antigen receptor (CAR) T cells engineered to target the epidermal growth factor receptor (EGFR) variant III tumor-specific antigen, as well as the wild-type EGFR protein, through secretion of a T-cell-engaging antibody molecule (TEAM). Treatment with CARv3-TEAM-E T cells did not result in adverse events greater than grade 3 or dose-limiting toxic effects. Radiographic tumor regression was dramatic and rapid, occurring within days after receipt of a single intraventricular infusion, but the responses were transient in two of the three participants. (Funded by Gateway for Cancer Research and others; INCIPIENT ClinicalTrials.gov number, NCT05660369.).


Assuntos
Receptores ErbB , Glioblastoma , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T CD8-Positivos/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/terapia , Glioblastoma/patologia , Imunoterapia Adotiva/efeitos adversos , Recidiva Local de Neoplasia/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/uso terapêutico
3.
Adv Biol (Weinh) ; 8(1): e2300233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670402

RESUMO

Extracellular vesicles (EVs) are highly sought after as a source of biomarkers for disease detection and monitoring. Tumor EV isolation, processing, and evaluation from biofluids is convoluted by EV heterogeneity and biological contaminants and is limited by technical processing efficacy. This study rigorously compares common bulk EV isolation workflows (size exclusion chromatography, SEC; membrane affinity, MA) alongside downstream RNA extraction protocols to investigate molecular analyte recovery. EV integrity and recovery is evaluated using a variety of technologies to quantify total intact EVs, total and surface proteins, and RNA purity and recovery. A comprehensive evaluation of each analyte is performed, with a specific emphasis on maintaining user (n = 2), biological (n = 3), and technical replicates (n≥3) under in vitro conditions. Subsequent study of tumor EV spike-in into healthy donor plasma samples is performed to further validate biofluid-derived EV purity and isolation for clinical application. Results show that EV surface integrity is considerably preserved in eluates from SEC-derived EVs, but RNA recovery and purity, as well as bulk protein isolation, is significantly improved in MA-isolated EVs. This study concludes that EV isolation and RNA extraction pipelines govern recovered analyte integrity, necessitating careful selection of processing modality to enhance recovery of the analyte of interest.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografia em Gel , RNA/análise , RNA/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo
4.
Neurooncol Adv ; 5(1): vdad104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811539

RESUMO

Background: Glioblastoma (GBM) is a highly aggressive and invasive brain tumor associated with high patient mortality. A large fraction of GBM tumors have been identified as epidermal growth factor receptor (EGFR) amplified and ~50% also are EGFRvIII mutant positive. In a previously reported multicenter phase II study, we have described the response of recurrent GBM (rGBM) patients to dacomitinib, an EGFR tyrosine kinase inhibitor (TKI). As a continuation of that report, we leverage the tumor cargo-encapsulating extracellular vesicles (EVs) and explore their genetic composition as carriers of tumor biomarker. Methods: Serum samples were longitudinally collected from EGFR-amplified rGBM patients who clinically benefitted from dacomitinib therapy (responders) and those who did not (nonresponders), as well as from a healthy cohort of individuals. The serum EV transcriptome was evaluated to map the RNA biotype distribution and distinguish GBM disease. Results: Using long RNA sequencing, we show enriched detection of over 10 000 coding RNAs from serum EVs. The EV transcriptome yielded a unique signature that facilitates differentiation of GBM patients from healthy donors. Further analysis revealed genetic enrichment that enables stratification of responders from nonresponders prior to dacomitinib treatment as well as following administration. Conclusion: This study demonstrates that genetic composition analysis of serum EVs may aid in therapeutic stratification to identify patients with dacomitinib-responsive GBM.

5.
Cell Rep Med ; 4(10): 101198, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37716353

RESUMO

The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.


Assuntos
Ácidos Nucleicos Livres , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Biópsia Líquida , Ácidos Nucleicos Livres/genética , Biomarcadores , Células Neoplásicas Circulantes/patologia
6.
Cell Rep Med ; 4(10): 101196, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37725979

RESUMO

Liquid biopsy, through isolation and analysis of disease-specific analytes, has evolved as a promising tool for safe and minimally invasive diagnosis and monitoring of tumors. It also has tremendous utility as a companion diagnostic allowing detection of biomarkers in a range of cancers (lung, breast, colon, ovarian, brain). However, clinical implementation and validation remains a challenge. Among other stages of development, preanalytical variables are critical in influencing the downstream cellular and molecular analysis of different analytes. Although considerable progress has been made to address these challenges, a comprehensive assessment of the impact on diagnostic parameters and consensus on standardized and optimized protocols is still lacking. Here, we summarize and critically evaluate key variables in the preanalytical stage, including study population selection, choice of biofluid, sample handling and collection, processing, and storage. There is an unmet need to develop and implement comprehensive preanalytical guidelines on the optimal practices and methodologies.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Biópsia Líquida , Biomarcadores
7.
Cancers (Basel) ; 15(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37568734

RESUMO

Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.

8.
Neurooncol Adv ; 4(Suppl 2): ii53-ii60, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36380860

RESUMO

Extracellular vesicles (EVs) represent a valuable tool in liquid biopsy with tremendous clinical potential in diagnosis, prognosis, and therapeutic monitoring of gliomas. Compared to tissue biopsy, EV-based liquid biopsy is a low-cost, minimally invasive method that can provide information on tumor dynamics before, during, and after treatment. Tumor-derived EVs circulating in biofluids carry a complex cargo of molecular biomarkers, including DNA, RNA, and proteins, which can be indicative of tumor growth and progression. Here, we briefly review current commercial and noncommercial methods for the isolation, quantification, and biochemical characterization of plasma EVs from patients with glioma, touching on whole EV analysis, mutation detection techniques, and genomic and proteomic profiling. We review notable advantages and disadvantages of plasma EV isolation and analytical methods, and we conclude with a discussion on clinical translational opportunities and key challenges associated with the future implementation of EV-based liquid biopsy for glioma treatment.

9.
J Extracell Vesicles ; 11(11): e12278, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36404434

RESUMO

Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape. EVs are often analysed in bulk which hinders the analysis of rare, tumour-specific EV subpopulations from the large host EV background. Here, we fractionated EV subpopulations in vitro and in vivo and characterized their phenotype and generic cargo. We used 5-aminolevulinic acid (5-ALA) to induce release of endogenously fluorescent tumour-specific EVs (EVPpIX ). Analysis of five different subpopulations (EVPpIX , EVCD63 , EVCD9 , EVEGFR , EVCFDA ) from glioblastoma (GBM) cell lines revealed unique transcriptome profiles, with the EVPpIX transcriptome demonstrating closer alignment to tumorigenic processes over the other subpopulations. Similarly, isolation of tumour-specific EVs from GBM patient plasma showed enrichment in GBM-associated genes, when compared to bulk EVs from plasma. We propose that fractionation of EV populations facilitates detection and isolation of tumour-specific EVs for disease monitoring.


Assuntos
Vesículas Extracelulares , Glioblastoma , Ácido Aminolevulínico/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/diagnóstico , Humanos
10.
Sci Adv ; 8(43): eabo1304, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306353

RESUMO

Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.

11.
Clin Cancer Res ; 28(18): 4070-4082, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35849415

RESUMO

PURPOSE: Liquid biopsy offers an attractive platform for noninvasive tumor diagnosis, prognostication, and prediction of glioblastoma clinical outcomes. Prior studies report that 30% to 50% of GBM lesions characterized by EGFR amplification also harbor the EGFRvIII mutation. EXPERIMENTAL DESIGN: A novel digital droplet PCR (ddPCR) assay for high GC content amplicons was developed and optimized for sensitive detection of EGFRvIII in tumor tissue and circulating extracellular vesicle RNA (EV RNA) isolated from the plasma of patients with glioma. RESULTS: Our optimized qPCR assay detected EGFRvIII mRNA in 81% [95% confidence interval (CI), 68%-94%] of EGFR-amplified glioma tumor tissue, indicating a higher than previously reported prevalence of EGFRvIII in glioma. Using the optimized ddPCR assay in discovery and blinded validation cohorts, we detected EGFRvIII mutation in 73% (95% CI, 64%-82%) of patients with a specificity of 98% (95% CI, 87%-100%), compared with qPCR tumor tissue analysis. In addition, upon longitudinal monitoring in 4 patients, we report detection of EGFRvIII in the plasma of patients with different clinical outcomes, rising with tumor progression, and decreasing in response to treatment. CONCLUSIONS: This study demonstrates the feasibility of detecting EGFRvIII mutation in plasma using a highly sensitive and specific ddPCR assay. We also show a higher than previously reported EGFRvIII prevalence in glioma tumor tissue. Several features of the assay are favorable for clinical implementation for detection and monitoring of EGFRvIII-positive tumors.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Vesículas Extracelulares , Glioblastoma , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Ácidos Nucleicos Livres/genética , Receptores ErbB , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Glioblastoma/patologia , Glioma/diagnóstico , Glioma/genética , Humanos , Mutação , RNA , Reação em Cadeia da Polimerase em Tempo Real
12.
Nat Immunol ; 23(6): 971-984, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624211

RESUMO

Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor+ GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB+ CD8+T cells but also increased CD4+ regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Receptores ErbB , Glioblastoma/metabolismo , Humanos , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Temozolomida/uso terapêutico , Microambiente Tumoral/genética
13.
ACS Cent Sci ; 8(1): 110-117, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35111901

RESUMO

Detecting protein markers in extracellular vesicles (EVs) is becoming a useful tool for basic research and clinical diagnoses. Most EV protein assays, however, require lengthy processes-conjugating affinity ligands onto sensing substrates and affixing EVs with additional labels to maximize signal generation. Here, we present an iPEX (impedance profiling of extracellular vesicles) system, an all-electrical strategy toward fast, multiplexed EV profiling. iPEX adopts one-step electropolymerization to rapidly functionalize sensor electrodes with antibodies; it then detects EV proteins in a label-free manner through impedance spectroscopy. The approach streamlines the entire EV assay, from sensor preparation to signal measurements. We achieved (i) fast immobilization of antibodies (<3 min) per electrode; (ii) high sensitivity (500 EVs/mL) without secondary labeling; and (iii) parallel detection (quadruple) in a single chip. A potential clinical utility was demonstrated by directly analyzing plasma samples from glioblastoma multiforme patients.

14.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446922

RESUMO

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Assuntos
Vesículas Extracelulares , Microscopia/métodos , Animais , Corantes/química , Epitopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Corantes Fluorescentes/química , Humanos
15.
Nat Biomed Eng ; 5(7): 678-689, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183802

RESUMO

Assays for cancer diagnosis via the analysis of biomarkers on circulating extracellular vesicles (EVs) typically have lengthy sample workups, limited throughput or insufficient sensitivity, or do not use clinically validated biomarkers. Here we report the development and performance of a 96-well assay that integrates the enrichment of EVs by antibody-coated magnetic beads and the electrochemical detection, in less than one hour of total assay time, of EV-bound proteins after enzymatic amplification. By using the assay with a combination of antibodies for clinically relevant tumour biomarkers (EGFR, EpCAM, CD24 and GPA33) of colorectal cancer (CRC), we classified plasma samples from 102 patients with CRC and 40 non-CRC controls with accuracies of more than 96%, prospectively assessed a cohort of 90 patients, for whom the burden of tumour EVs was predictive of five-year disease-free survival, and longitudinally analysed plasma from 11 patients, for whom the EV burden declined after surgery and increased on relapse. Rapid assays for the detection of combinations of tumour biomarkers in plasma EVs may aid cancer detection and patient monitoring.


Assuntos
Neoplasias Colorretais/diagnóstico , Técnicas Eletroquímicas/métodos , Vesículas Extracelulares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Área Sob a Curva , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Intervalo Livre de Doença , Molécula de Adesão da Célula Epitelial/sangue , Molécula de Adesão da Célula Epitelial/metabolismo , Vesículas Extracelulares/imunologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Recidiva , Adulto Jovem
16.
Cancers (Basel) ; 13(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799709

RESUMO

Liquid biopsy provides a minimally invasive platform for the detection of tumor-derived information, including hotspot mutations, such as BRAF V600E. In this study, we provide evidence of the technical development of a ddPCR assay for the detection of BRAF V600E mutations in the plasma of patients with glioma or brain metastasis. In a small patient cohort (n = 9, n = 5 BRAF V600E, n = 4 BRAF WT, n = 4 healthy control), we were able to detect the BRAF V600E mutation in the plasma of 4/5 patients with BRAF V600E-tissue confirmed mutant tumors, and none of the BRAF WT tumors. We also provide evidence in two metastatic patients with longitudinal monitoring, where the plasma-based BRAF V600E mutation correlated with clinical disease status. This proof of principle study demonstrates the potential of this assay to serve as an adjunctive tool for the detection, monitoring, and molecular characterization of BRAF mutant gliomas and brain metastasis.

17.
Cancer Drug Resist ; 4(1): 1-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582008

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor with a median survival of 15 months despite standard care therapy consisting of maximal surgical debulking, followed by radiation therapy with concurrent and adjuvant temozolomide treatment. The natural history of GBM is characterized by inevitable recurrence with patients dying from increasingly resistant tumor regrowth after therapy. Several mechanisms including inter- and intratumoral heterogeneity, the evolution of therapy-resistant clonal subpopulations, reacquisition of stemness in glioblastoma stem cells, multiple drug efflux mechanisms, the tumor-promoting microenvironment, metabolic adaptations, and enhanced repair of drug-induced DNA damage have been implicated in therapy failure. Extracellular vesicles (EVs) have emerged as crucial mediators in the maintenance and establishment of GBM. Multiple seminal studies have uncovered the multi-dynamic role of EVs in the acquisition of drug resistance. Mechanisms include EV-mediated cargo transfer and EVs functioning as drug efflux channels and decoys for antibody-based therapies. In this review, we discuss the various mechanisms of therapy resistance in GBM, highlighting the emerging role of EV-orchestrated drug resistance. Understanding the landscape of GBM resistance is critical in devising novel therapeutic approaches to fight this deadly disease.

18.
Front Genet ; 12: 778416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047007

RESUMO

We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19-20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-videos/). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems.

19.
Clin Cancer Res ; 27(1): 169-178, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051308

RESUMO

PURPOSE: Liquid biopsy offers a minimally invasive tool to diagnose and monitor the heterogeneous molecular landscape of tumors over time and therapy. Detection of TERT promoter mutations (C228T, C250T) in cfDNA has been successful for some systemic cancers but has yet to be demonstrated in gliomas, despite the high prevalence of these mutations in glioma tissue (>60% of all tumors). EXPERIMENTAL DESIGN: Here, we developed a novel digital droplet PCR (ddPCR) assay that incorporates features to improve sensitivity and allows for the simultaneous detection and longitudinal monitoring of two TERT promoter mutations (C228T and C250T) in cfDNA from the plasma of patients with glioma. RESULTS: In baseline performance in tumor tissue, the assay had perfect concordance with an independently performed clinical pathology laboratory assessment of TERT promoter mutations in the same tumor samples [95% confidence interval (CI), 94%-100%]. Extending to matched plasma samples, we detected TERT mutations in both discovery and blinded multi-institution validation cohorts with an overall sensitivity of 62.5% (95% CI, 52%-73%) and a specificity of 90% (95% CI, 80%-96%) compared with the gold-standard tumor tissue-based detection of TERT mutations. Upon longitudinal monitoring in 5 patients, we report that peripheral TERT-mutant allele frequency reflects the clinical course of the disease, with levels decreasing after surgical intervention and therapy and increasing with tumor progression. CONCLUSIONS: Our results demonstrate the feasibility of detecting circulating cfDNA TERT promoter mutations in patients with glioma with clinically relevant sensitivity and specificity.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Telomerase/genética , Adulto , Idoso , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Estudos de Coortes , Análise Mutacional de DNA/métodos , Estudos de Viabilidade , Feminino , Glioma/sangue , Glioma/terapia , Humanos , Biópsia Líquida/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Sensibilidade e Especificidade
20.
Cancers (Basel) ; 12(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171819

RESUMO

Background: In glioblastoma (GB), tissue is required for accurate diagnosis and subtyping. Tissue can be obtained through resection or (stereotactic) biopsy, but these invasive procedures provide risks for patients. Extracellular vesicles (EVs) are small, cell-derived vesicles that contain miRNAs, proteins, and lipids, and possible candidates for liquid biopsies. GB-derived EVs can be found in the blood of patients, but it is difficult to distinguish them from circulating non-tumor EVs. 5-aminolevulinic acid (5-ALA) is orally administered to GB patients to facilitate tumor visualization and maximal resection, as it is metabolized to fluorescent protoporphyrin IX (PpIX) that accumulates in glioma cells. In this study, we assessed whether PpIX accumulates in GB-derived EVs and whether these EVs could be isolated and characterized to enable a liquid biopsy in GB. Methods: EVs were isolated from the conditioned media of U87 cells treated with 5-ALA by differential ultracentrifugation. Blood samples were collected and processed from healthy controls and patients undergoing 5-ALA guided surgery for GB. High-resolution flow cytometry (hFC) enabled detection and sorting of PpIX-positive EVs, which were subsequently analyzed by digital droplet PCR (ddPCR). Results: PpIX-positive EVs could be detected in conditioned cell culture media as well as in patient samples after administration of 5-ALA. By using hFC, we could sort the PpIX-positive EVs for further analysis with ddPCR, which indicated the presence of EVs and GB-associated miRNAs. Conclusion: GB-derived EVs can be isolated from the plasma of GB patients by using 5-ALA induced fluorescence. Although many challenges remain, our findings show new possibilities for the development of blood-based liquid biopsies in GB patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA