Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microbiologyopen ; 10(1): e1137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544453

RESUMO

To survive within complex environmental niches, including the human host, bacteria have evolved intricate interspecies communities driven by competition for limited nutrients, cooperation via complementary metabolic proficiencies, and establishment of homeostatic relationships with the host immune system. The study of such complex, interdependent relationships is often hampered by the challenges of culturing many bacterial strains in research settings and the limited set of tools available for studying the dynamic behavior of multiple bacterial species at the microscale. Here, we utilize a microfluidic-based co-culture system and time-lapse imaging to characterize dynamic interactions between Streptococcus species, Staphylococcus aureus, and Actinomyces species. Co-culture of Streptococcus cristatus or S. salivarius in nanoliter compartments with Actinomyces graevenitzii revealed localized exclusion of Streptococcus and Staphylococcus from media immediately surrounding A. graevenitzii microcolonies. This community structure did not occur with S. mitis or S. oralis strains or in co-cultures containing other Actinomycetaceae species such as S. odontolyticus or A. naeslundii. Moreover, fewer neutrophils were attracted to compartments containing both A. graevenitzii and Staphylococcus aureus than to an equal number of either species alone, suggesting a possible survival benefit together during immune responses.


Assuntos
Actinomyces/crescimento & desenvolvimento , Antibiose/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus/crescimento & desenvolvimento , Actinomyces/imunologia , Actinomyces/isolamento & purificação , Técnicas de Cocultura , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/imunologia , Microbiota/imunologia , Microfluídica/métodos , Boca/microbiologia , Neutrófilos/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/isolamento & purificação , Streptococcus/imunologia , Streptococcus/isolamento & purificação
2.
Biochem Biophys Res Commun ; 495(4): 2383-2389, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29278706

RESUMO

Ceramidases are a group of enzymes that degrade pro-inflammatory ceramide by cleaving a fatty acid to form anti-inflammatory sphingosine lipid. Thus far, acid, neutral and alkaline ceramidase isozymes have been described. However, the expression patterns of ceramidase isoforms as well as their role in periodontal disease pathogenesis remain unknown. In this study, expression patterns of ceramidase isoforms were quantified by real-time PCR and immunohistochemistry in gingival samples of patients with periodontitis and healthy subjects, as well as in EpiGingivalTM-3D culture and OBA-9 gingival epithelial cells both of which were stimulated with or without the presence of live Porphyromonas gingivalis (ATCC 33277 strain). A significantly lower level of acid ceramidase expression was detected in gingival tissues from periodontal patients compared to those from healthy subjects. In addition, acid-ceramidase expression in EpiGingival™ 3D culture and OBA-9 cells was suppressed by stimulation with P. gingivalis in vitro. No significant fluctuation was detected for neutral or alkaline ceramidases in either gingival samples or cell cultures. Next, to elucidate the role of acid ceramidase in P. gingivalis-induced inflammation in vitro, OBA-9 cells were transduced with adenoviral vector expressing the human acid ceramidase (Ad-ASAH1) gene or control adenoviral vector (Ad-control). In response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells showed significantly lower mRNA expressions of caspase-3 as well as the percentage of Annexin V-positive cells, when compared with OBA-9 cells transduced with Ad-control vector. Furthermore, in response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells produced less TNF-α, IL-6, and IL1ß pro-inflammatory cytokines than observed in OBA-9 cells transduced with Ad-control vector. Collectively, our data show the novel discovery of anti-inflammatory and anti-apoptotic effects of acid ceramidase in host cells exposed to periodontal bacteria, and the attenuation of the expression of host-protective acid ceramidase in periodontal lesions.


Assuntos
Ceramidase Ácida/metabolismo , Infecções por Bacteroidaceae/enzimologia , Células Epiteliais/enzimologia , Células Epiteliais/microbiologia , Periodontite/enzimologia , Periodontite/microbiologia , Porphyromonas gingivalis/fisiologia , Ceramidase Ácida/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Periodonto/enzimologia , Periodonto/microbiologia
3.
South Afr J HIV Med ; 18(1): 775, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29568643

RESUMO

The gap in HIV testing remains significant and new modalities such as HIV self-testing (HIVST) have been recommended to reach key and under-tested populations. In December 2016, the World Health Organization (WHO) released the Guidelines on HIV Self-Testing and Partner Notification: A Supplement to the Consolidated Guidelines on HIV Testing Services (HTS) and urged member countries to develop HIVST policy and regulatory frameworks. In South Africa, HIVST was included as a supplementary strategy in the National HIV Testing Services Policy in 2016, and recently, guidelines for HIVST were included in the South African National Strategic Plan for HIV, sexually transmitted infections and tuberculosis 2017-2022. This document serves as an additional guidance for the National HIV Testing Services Policy 2016, with specific focus on HIVST. It is intended for policy advocates, clinical and non-clinical HTS providers, health facility managers and healthcare providers in private and public health facilities, non-governmental, community-based and faith-based organisations involved in HTS and outreach, device manufacturers, workplace programmes and institutes of higher education.

4.
Nature ; 524(7563): 59-64, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26222023

RESUMO

Multidrug tolerance is largely responsible for chronic infections and caused by a small population of dormant cells called persisters. Selection for survival in the presence of antibiotics produced the first genetic link to multidrug tolerance: a mutant in the Escherichia coli hipA locus. HipA encodes a serine-protein kinase, the multidrug tolerance activity of which is neutralized by binding to the transcriptional regulator HipB and hipBA promoter. The physiological role of HipA in multidrug tolerance, however, has been unclear. Here we show that wild-type HipA contributes to persister formation and that high-persister hipA mutants cause multidrug tolerance in urinary tract infections. Perplexingly, high-persister mutations map to the N-subdomain-1 of HipA far from its active site. Structures of higher-order HipA-HipB-promoter complexes reveal HipA forms dimers in these assemblies via N-subdomain-1 interactions that occlude their active sites. High-persistence mutations, therefore, diminish HipA-HipA dimerization, thereby unleashing HipA to effect multidrug tolerance. Thus, our studies reveal the mechanistic basis of heritable, clinically relevant antibiotic tolerance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Regiões Promotoras Genéticas/genética , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Tolerância a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Modelos Moleculares , Mutação/genética , Óperon/genética , Fenótipo , Multimerização Proteica , Estrutura Terciária de Proteína/genética , Transcrição Gênica/genética , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA