Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467211

RESUMO

This work reports on the development of starch-rich thermoplastic based formulations produced by using mango kernel flour, avoiding the extraction process of starch from mango kernel to produce these materials. Glycerol, sorbitol and urea at 15 wt% are used as plasticizers to obtain thermoplastic starch (TPS) formulations by extrusion and injection-moulding processes. Mechanical results show that sorbitol and urea allowed to obtain samples with tensile strength and elongation at break higher than the glycerol-plasticized sample, achieving values of 2.9 MPa of tensile strength and 42 % of elongation at break at 53 % RH. These results are supported by field emission scanning electron microscopy (FESEM) micrographs, where a limited concentration of voids was observed in the samples with sorbitol and urea, indicating a better interaction between starch and the plasticizers. Thermogravimetric analysis (TGA) shows that urea and sorbitol increase the thermal stability of TPS in comparison to the glycerol-plasticized sample. Differential scanning calorimetry (DSC) and dynamic-mechanical-thermal analysis (DMTA) verify the increase in stiffness of the sorbitol and urea plasticized TPS and also illustrate an increase in the glass transition temperature of both samples in comparison to the glycerol-plasticized sample. Glass transition temperatures of 45 °C were achieved for the sample with sorbitol.


Assuntos
Mangifera , Plastificantes , Plastificantes/química , Amido/química , Glicerol/química , Farinha , Plásticos , Sorbitol/química , Ureia/química
2.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959944

RESUMO

This study investigates the viability of cinnamic acid derivatives as alternative plasticizers for polyvinyl chloride (PVC) films by addressing concerns about conventional phthalate-based options that pose health and environmental risks. By theoretical modeling, this research evaluates the compatibility between various cinnamic acid-based plasticizers and the PVC matrix, which suggests their potential effectiveness. Additionally, the incorporation of these plasticizers notably enhances the tensile properties of PVC films, particularly in terms of ductility and elongation at break by surpassing the neat PVC. Moreover, cinnamic acid-based plasticizers induce a drop in the glass transition temperature and storage modulus by, thereby, enhancing flexibility and reducing brittleness in the material. Although a slight reduction in the onset degradation temperature is observed, it does not impede the industrial processing of PVC plastisols at temperatures up to 190 °C. Optically, plasticized films exhibit high transparency with minimal UV and visible light absorption, which renders them suitable for applications necessitating clarity. The water vapor transmission rate analysis indicates increased permeability, influenced by molecular volumes. Atomic force microscopy reveals a compacted, homogeneous surface structure in most plasticized films, which signifies improved film quality. Thus, utilizing cinnamic acid derivatives as PVC plasticizers offers substantial mechanical and structural benefits, while compatibility ensures effective integration by contributing to environmentally sustainable PVC formulations with enhanced performance.

3.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679165

RESUMO

In this study, yerba mate waste (YMW) was used to produce a kombucha beverage, and the obtained microbial cellulose produced as a byproduct (KMW) was used to reinforce a mechanically recycled poly(lactic acid) (r-PLA) matrix. Microbial cellulosic particles were also produced in pristine yerba mate for comparison (KMN). To simulate the revalorization of the industrial PLA products rejected during the production line, PLA was subjected to three extrusion cycles, and the resultant pellets (r3-PLA) were then plasticized with 15 wt.% of acetyl tributyl citrate ester (ATBC) to obtain optically transparent and flexible films by the solvent casting method. The plasticized r3-PLA-ATBC matrix was then loaded with KMW and KMN in 1 and 3 wt.%. The use of plasticizer allowed a good dispersion of microbial cellulose particles into the r3-PLA matrix, allowing us to obtain flexible and transparent films which showed good structural and mechanical performance. Additionally, the obtained films showed antioxidant properties, as was proven by release analyses conducted in direct contact with a fatty food simulant. The results suggest the potential interest of these recycled and biobased materials, which are obtained from the revalorization of food waste, for their industrial application in food packaging and agricultural films.

4.
Polymers (Basel) ; 15(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38231960

RESUMO

New composite materials were developed with poly(lactide) (PLA) and Posidonia oceanica fibers through reactive extrusion in the presence of dicumyl peroxide (DCP) and subsequent injection molding. The effect of different amounts of methyl trans-cinnamate (MTC) on the mechanical, thermal, thermomechanical, and wettability properties was studied. The results showed that the presence of Posidonia oceanica fibers generated disruptions in the PLA matrix, causing a decrease in the tensile mechanical properties and causing an impact on the strength due to the stress concentration phenomenon. Reactive extrusion with DCP improved the PO/PLA interaction, diminishing the gap between the fibers and the surrounding matrix, as corroborated by field emission scanning electron microscopy (FESEM). It was observed that 20 phr (parts by weight of the MTC, per one hundred parts by weight of the PO/PLA composite) led to a noticeable plasticizing effect, significantly increasing the elongation at break from 7.1% of neat PLA to 31.1%, which means an improvement of 338%. A considerable decrease in the glass transition temperature, from 61.1 °C of neat PLA to 41.6 °C, was also observed. Thermogravimetric analysis (TGA) showed a loss of thermal stability of the plasticized composites, mainly due to the volatility of the cinnamate ester, leading to a decrease in the onset degradation temperature above 10 phr MTC.

5.
Polymers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631851

RESUMO

In this work, green composites have been developed and characterized using a bio-based polymeric matrix such as BioPBSA and the introduction of 30 wt.% short hemp fibers as a natural reinforcement to obtain materials with maximum environmental efficiency. In order to increase the interfacial adhesion between the matrix and the fiber to obtain better properties in the composites, a reactive extrusion process has been carried out. On the one hand, different additives derived from bio-based itaconic acid have been added to the BioPBSA/HEMP composite, such as dibutyl itaconate (DBI) and a copolymer of PBSA grafted with itaconic acid (PBSA-g-IA). On the other hand, a different copolymer of PBSA grafted with maleic anhydride (PBSA-g-MA) was also tested. The resulting composites have been processed by injection-molding to obtain different samples which were evaluated in terms of mechanical, thermal, chemical, dynamic-mechanical, morphological and wettability and color properties. In relation to the mechanical properties, the incorporation of hemp fibers resulted in an increase in the stiffness of the base polymer. The tensile modulus of pure BioPBSA increased from 281 MPa to 3482 MPa with 30% fiber. The addition of DBI shows a remarkable improvement in the ductility of the composites, while copolymers with IA and MA, generate mechanically balanced composites. In terms of thermal properties, the incorporation of hemp fiber and compatibilizing agents led to a reduction in thermal stability. However, from the point of view of thermomechanical properties, a clear increase in rigidity is achieved throughout the temperature range studied. As far as the color of the samples is concerned, the incorporation of hemp generates a typical color, while the incorporation of the compatibilizing agents does not modify this color excessively. Finally, the introduction of lignocellulosic fibers greatly affects water absorption and contact angle, although the use of additives helped to mitigate this effect.

6.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372135

RESUMO

During the last decades, the increasing ecology in the reduction of environmental impact caused by traditional plastics is contributing to the growth of more sustainable plastics with the aim to reduce the consumption of non-renewable resources for their production [...].

7.
Polymers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067283

RESUMO

Environmentally friendly wood plastic composites (WPC) with biobased high density polyethylene (BioHDPE) as the polymer matrix and hemp, flax and jute short fibers as natural reinforcements, were melt-compounded using twin-screw extrusion and shaped into pieces by injection molding. Polyethylene-graft-maleic anhydride (PE-g-MA) was added at two parts per hundred resin to the WPC during the extrusion process in order to reduce the lack in compatibility between the lignocellulosic fibers and the non-polar polymer matrix. The results revealed a remarkable improvement of the mechanical properties with the combination of natural fibers, along with PE-g-MA, highly improved stiffness and mechanical properties of neat BioHDPE. Particularly, hemp fiber drastically increased the Young's modulus and impact strength of BioHDPE. Thermal analysis revealed a slight improvement in thermal stability with the addition of the three lignocellulosic fibers, increasing both melting and degradation temperatures. The incorporation of the fibers also increased water absorption due to their lignocellulosic nature, which drastically improved the polarity of the composite. Finally, fire behavior properties were also improved in terms of flame duration, thanks to the ability of the fibers to form char protective barriers that isolate the material from oxygen and volatiles.

8.
Polymers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919970

RESUMO

The curing process of epoxy resin based on epoxidized linseed oil (ELO) is studied using dynamic differential scanning calorimetry (DSC) in order to determine the kinetic triplet (Ea, f(α) and A) at different heating rates. The apparent activation energy, Ea, has been calculated by several differential and integral isoconversional methods, namely Kissinger, Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink. All methods provide similar values of Ea (between 66 and 69 kJ/mol), and this shows independence versus the heating rate used. The epoxy resins crosslinking is characterized by a multi-step process. However, for the sake of the simplicity and to facilitate the understanding of the influence of the oxirane location on the curing kinetic, this can be assimilated to a single-step process. The reaction model has a high proportion of autocatalytic process, fulfilling that αM is between 0 and αp and αM < αp∞. Using as reference the model proposed by Sesták-Berggren, by obtaining two parameters (n and m) it is possible to obtain, on the one hand, the kinetic parameters and, on the other hand, a graphical comparison of the degree of conversion, α, versus temperature (T) at different heating rates with the average n and m values of this model. The good accuracy of the proposed model with regard to the actual values obtained by DSC gives consistency to the obtained parameters, thus suggesting the crosslinking of the ELO-based epoxy has apparent activation energies similar to other petroleum-derived epoxy resins.

9.
Polymers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546216

RESUMO

This contribution focuses on the development of flax and flax/basalt hybrid reinforced composites based on epoxidized linseed oil (ELO) resin, exploiting the feasibility of different ratios of glutaric anhydride (GA) to maleinized linseed oil (MLO) in the hardener system (50:0, 40:10 and 30:20 wt.%) to provide crosslinked thermosets with balanced properties. The hybrid laminates have been manufactured by resin transfer molding (RTM) and subjected to dynamic-mechanical (DMA) and thermal gravimetry (TGA) analysis. The presence of glutaric anhydride (GA) resulted in hard and relatively brittle flax and flax/basalt laminates, whose loss moduli decreased as the number of basalt plies diminished. Furthermore, the increase in MLO content in the GA:MLO hardener system shifted the glass transition temperatures (Tg) from 70 °C to 59 and 56 °C, which is representative of a decrease in brittleness of the crosslinked resin. All samples exhibited two stages of their decomposition process irrespective of the MLO content. The latter influenced the residual mass content that increased with the increase of the MLO wt.% from 10 to 30 wt.%, with shifts of the final degradation temperatures from 410 °C to 425 °C and 445 °C, respectively.

10.
Polymers (Basel) ; 13(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494547

RESUMO

This work focuses on the manufacturing and characterization of highly environmentally friendly lightweight sandwich structures based on polylactide (PLA) honeycomb cores and PLA-flax fabric laminate skins or facings. PLA honeycombs were manufactured using PLA sheets with different thicknesses ranging from 50 to 500 µm. The PLA sheets were shaped into semi-hexagonal profiles by hot-compression molding. After this stage, the different semi-hexagonal sheets were bonded together to give hexagonal panels. The skins were manufactured by hot-compression molding by stacking two Biotex flax/PLA fabrics with 40 wt% PLA fibers. The combined use of temperature (200 °C), pressure, and time (2 min) allowed PLA fibers to melt, flow, and fully embed the flax fabrics, thus leading to thin composite laminates to be used as skins. Sandwich structures were finally obtained by bonding the PLA honeycomb core with the PLA-flax skins using an epoxy adhesive. A thin PLA nonwoven was previously attached to the external hexagonal PLA core, to promote mechanical interlock between the core and the skins. The influence of the honeycomb core thickness on the final flexural and compression properties was analyzed. The obtained results indicate that the core thickness has a great influence on the flexural properties, which increases with core thickness; nevertheless, as expected, the bonding between the PLA honeycomb core and the skins is critical. Excellent results have been obtained with 10 and 20 mm thickness honeycombs with a core shear of about 0.60 and facing bending stresses of 31-33 MPa, which can be considered as candidates for technical applications. The ultimate load to the sample weight ratio reached values of 141.5 N·g-1 for composites with 20 mm thick PLA honeycombs, which is comparable to other technical composite sandwich structures. The bonding between the core and the skins is critical as poor adhesion does not allow load transfer and, while the procedure showed in this research gives interesting results, new developments are necessary to obtain standard properties on sandwich structures.

11.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466389

RESUMO

This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene-ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indicate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with MLO leads to an increase in impact strength up to 6.1 kJ/m2, thus giving evidence of the potential of MLO to compete with other petroleum-derived compatibilizers to obtain tough PLA formulations. MLO also provides increased ductile properties, since neat PLA is a brittle polymer with an elongation at break of 7.4%, while its blend with 20 wt.% SEBS and MLO as compatibilizer offers an elongation at break of 50.2%, much higher than that provided by typical SEBS-g-MA compatibilizer (10.1%). MLO provides a slight decrease (about 3 °C lower) in the glass transition temperature (Tg) of the PLA-rich phase, thus showing some plasticization effects. Although MLO addition leads to some yellowing due to its intrinsic yellow colour, this can contribute to serving as a UV light barrier with interesting applications in the packaging industry. Therefore, MLO represents a cost-effective and sustainable solution to the use of conventional petroleum-derived compatibilizers.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Óleo de Semente do Linho/química , Anidridos Maleicos/química , Poliésteres/química , Polímeros/química , Embalagem de Produtos/métodos , Temperatura , Resistência à Tração
12.
Polymers (Basel) ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35012159

RESUMO

Biobased HDPE (bioHDPE) was melt-compounded with different percentages (2.5 to 40.0 wt.%) of short hemp fibers (HF) as a natural reinforcement to obtain environmentally friendly wood plastic composites (WPC). These WPC were melt-compounded using a twin-screw extrusion and shaped into standard samples by injection molding. To improve the poor compatibility between the high non-polar BioHDPE matrix and the highly hydrophilic lignocellulosic fibers, a malleated copolymer, namely, polyethylene-graft-maleic anhydride (PE-g-MA), was used. The addition of short hemp fibers provided a remarkable increase in the stiffness that, in combination with PE-g-MA, led to good mechanical performance. In particular, 40 wt.% HF drastically increased the Young's modulus and impact strength of BioHDPE, reaching values of 5275 MPa and 3.6 kJ/m2, respectively, which are very interesting values compared to neat bioHDPE of 826 MPa and 2.0 kJ/m2. These results were corroborated by dynamic mechanical thermal analysis (DMTA) results, which revealed a clear increasing tendency on stiffness with increasing the fiber loading over the whole temperature range. The crystal structure was not altered by the introduction of the natural fibers as could be seen in the XRD patterns in which mainly the heights of the main peaks changed, and only small peaks associated with the presence of the fiber appeared. Analysis of the thermal properties of the composites showed that no differences in melting temperature occurred and the non-isothermal crystallization process was satisfactorily described from the combined Avrami and Ozawa model. As for the thermal degradation, the introduction of HF resulted in the polymer degradation taking place at a higher temperature. As for the change in color of the injected samples, it was observed that the increase in fiber generated a clear modification in the final shades of the pieces, reaching colors very similar to dark woods for percentages higher than 20% HF. Finally, the incorporation of an increasing percentage of fibers also increased water absorption due to its lignocellulosic nature in a linear way, which drastically improved the polarity of the composite.

13.
Antioxidants (Basel) ; 10(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375591

RESUMO

This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.

14.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260291

RESUMO

In the last few years, a remarkable growth in the use of functional polyesters has been observed.

15.
Materials (Basel) ; 13(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142698

RESUMO

In the last decade, continuous research advances have been observed in the field of environmentally friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This research activity has become much more intense in the food packaging industry due to the high volume of waste it generates. Biopolymers are nowadays considered as among the most promising materials to solve these environmental problems. However, they still show inferior performance regarding both processability and end-use application. Blending currently represents a very cost-effective strategy to increase the ductility and impact resistance of biopolymers. Furthermore, different lignocellulosic materials are being explored to be used as reinforcing fillers in polymer matrices for improving the overall properties, lower the environmental impact, and also reduce cost. Moreover, the use of vegetable oils, waste derived liquids, and essential oils opens up novel opportunities as natural plasticizers, reactive compatibilizers or even active additives for the development of new polymer formulations with enhanced performance and improved sustainability profile.

16.
Polymers (Basel) ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911669

RESUMO

Copper(II) sulfate-loaded chitosan microparticles were herein prepared using ionic cross-linking with sodium tripolyphosphate (STPP) followed by spray drying. The microencapsulation process was optimal using an inlet temperature of 180 °C, a liquid flow-rate of 290 mL/h, an aspiration rate of 90%, and an atomizing gas flow-rate of 667 nL/h. Chitosan particles containing copper(II) sulfate of approximately 4 µm with a shrunken-type morphology were efficiently attained and, thereafter, fixated on a paper substrate either via cross-linking with STPP or using a chitosan hydrogel. The latter method led to the most promising system since it was performed at milder conditions and the original paper quality was preserved. The developed cellulose substrates were reduced and then exposed to different humidity conditions and characterized using colorimetric measurements in order to ascertain their potential as irreversible indicators for moisture detection. The results showed that the papers coated with the copper(II) sulfate-containing chitosan microparticles were successfully able to detect ambient moisture shown by the color changes of the coatings from dark brown to blue, which can be easily seen with the naked eye. Furthermore, the chitosan microparticles yielded no cytotoxicity in an in vitro cell culture experiment. Therefore, the cellulose substrates herein developed hold great promise in paper packaging as on-package colorimetric indicators for monitoring moisture in real time.

17.
Polymers (Basel) ; 12(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640632

RESUMO

This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were obtained by melt extrusion in a twin screw co-rotating extruder. The resulting composites were injection-molded for further characterization. The obtained materials were characterized to obtain reliable data about their mechanical, thermal, and morphological properties. The effect of the HNTs wt% on these properties was evaluated. From a mechanical standpoint, the addition of 30 wt% HNTs gave an increase in tensile modulus of twice the initial value, thus verifying how this type of natural load provides increased stiffness on injection molded parts. The materials prepared with HNTs slightly improved the thermal stability, while a noticeable improvement on thermomechanical resistance over a wide temperature range was observed with increasing HNTs content. The obtained results indicate that high biobased content composites can be obtained with an engineering thermoplastic, i.e., PA610, and a natural inorganic nanotube-shaped filler, i.e., HNTs, with balanced mechanical properties and attractive behavior against high temperature.

18.
Polymers (Basel) ; 12(6)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545882

RESUMO

In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend.

19.
Polymers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403400

RESUMO

Eco-efficient Wood Plastic Composites (WPCs) have been obtained using poly(hydroxybutyrate-co-hexanoate) (PHBH) as the polymer matrix, and almond shell flour (ASF), a by-product from the agro-food industry, as filler/reinforcement. These WPCs were prepared with different amounts of lignocellulosic fillers (wt %), namely 10, 20 and 30. The mechanical characterization of these WPCs showed an important increase in their stiffness with increasing the wt % ASF content. In addition, lower tensile strength and impact strength were obtained. The field emission scanning electron microscopy (FESEM) study revealed the lack of continuity and poor adhesion among the PHBH-ASF interface. Even with the only addition of 10 wt % ASF, these green composites become highly brittle. Nevertheless, for real applications, the WPC with 30 wt % ASF is the most attracting material since it contributes to lowering the overall cost of the WPC and can be manufactured by injection moulding, but its properties are really compromised due to the lack of compatibility between the hydrophobic PHBH matrix and the hydrophilic lignocellulosic filler. To minimize this phenomenon, 10 and 20 phr (weight parts of OLA-Oligomeric Lactic Acid per one hundred weight parts of PHBH) were added to PHBH/ASF (30 wt % ASF) composites. Differential scanning calorimetry (DSC) suggested poor plasticization effect of OLA on PHBH-ASF composites. Nevertheless, the most important property OLA can provide to PHBH/ASF composites is somewhat compatibilization since some mechanical ductile properties are improved with OLA addition. The study by thermomechanical analysis (TMA), confirmed the increase of the coefficient of linear thermal expansion (CLTE) with increasing OLA content. The dynamic mechanical characterization (DTMA), revealed higher storage modulus, E', with increasing ASF. Moreover, DTMA results confirmed poor plasticization of OLA on PHBH-ASF (30 wt % ASF) composites, but interesting compatibilization effects.

20.
Polymers (Basel) ; 12(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422915

RESUMO

Polyhydroxyalkanoates (PHAs) represent a promising group of bacterial polyesters for new applications. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a very promising bacterial polyester with potential uses in the packaging industry; nevertheless, as with many (almost all) bacterial polyesters, PHBH undergoes secondary crystallization (aging) which leads to an embrittlement. To overcome or minimize this, in the present work a flexible petroleum-derived polyester, namely poly(ε-caprolactone), was used to obtain PHBH/PCL blends with different compositions (from 0 to 40 PCL wt %) using extrusion followed by injection moulding. The thermal analysis of the binary blends was studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TGA). Both TGA and DSC revealed immiscibility between PHBH and PCL. Mechanical dynamic thermal analysis (DMTA) allowed a precise determination of the glass transition temperatures (Tg) as a function of the blend composition. By means of field emission scanning electron microscopy (FESEM), an internal structure formed by two phases was observed, with a PHBH-rich matrix phase and a finely dispersed PCL-rich phase. These results confirmed the immiscibility between these two biopolymers. However, the mechanical properties obtained through tensile and Charpy tests, indicated that the addition of PCL to PHBH considerably improved toughness. PHBH/PCL blends containing 40 PCL wt % offered an impact resistance double that of neat PHBH. PCL addition also contributed to a decrease in brittleness and an improvement in toughness and some other ductile properties. As expected, an increase in ductile properties resulted in a decrease in some mechanical resistant properties, e.g., the modulus and the strength (in tensile and flexural conditions) decreased with increasing wt % PCL in PHBH/PCL blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA