RESUMO
Age-related macular degeneration (AMD) causes severe vision impairment in aged individuals. The health impact and cost of the disease will dramatically increase over the years, with the increase in the aging population. Currently, antivascular endothelial growth factor agents are routinely used for managing late-stage AMD, and recent data have shown that up to 15%-33% of patients do not respond to this treatment. Henceforth, there is a need to develop better treatment options. One avenue is to investigate the role proteases and inflammatory molecules might have in regulating and being regulated by vascular endothelial growth factor. Moreover, emerging data indicate that proteases and inflammatory molecules might be critical in the development and progression of AMD. This article reviews recent literature that investigates proteases and inflammatory molecules involved in the development of AMD. Gaining insights into the proteolytic and inflammatory pathways associated with the pathophysiology of AMD could enable the development of additional or alternative drug strategies for the treatment of AMD.
Assuntos
Mediadores da Inflamação/fisiologia , Peptídeo Hidrolases/fisiologia , Degeneração Macular Exsudativa/fisiopatologia , Envelhecimento/fisiologia , Humanos , Degeneração Macular Exsudativa/enzimologiaRESUMO
PURPOSE: To examine the proteins differentially expressed in the tear film of people with keratoconus and normal subjects. METHODS: Unstimulated tears from people with keratoconus (KC) and controls (C) were collected using a capillary tube. Tear proteins from people with KC and controls were partitioned using a novel in-solution electrophoresis, Microflow 10 (ProteomeSep), and analyzed using linear ion trap quadrupole fourier transform mass spectrometry. Spectral counting was used to quantify the individual tear proteins. RESULTS: Elevated levels of cathepsin B (threefold) were evident in the tears of people with KC. Polymeric immunoglobulin receptor (ninefold), fibrinogen alpha chain (eightfold), cystatin S (twofold), and cystatin SN (twofold) were reduced in tears from people with KC. Keratin type-1 cytoskeletal-14 and keratin type-2 cytoskeletal-5 were present only in the tears of people with KC. CONCLUSIONS: The protein changes in tears, that is, the decrease in protease inhibitors and increase in proteases, found in the present and other previously published studies reflect the pathological events involved in KC corneas. Further investigations into tear proteins may help elucidate the underlying molecular mechanisms of KC, which could result in better treatment options.
Assuntos
Proteínas do Olho/metabolismo , Ceratocone/metabolismo , Proteômica , Adulto , Estudos de Casos e Controles , Topografia da Córnea , Feminino , Ontologia Genética , Humanos , MasculinoRESUMO
BACKGROUND: Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. METHODS: Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. RESULTS: The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. CONCLUSION: Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease.
Assuntos
Citocinas/análise , Ceratocone/etiologia , Peptídeo Hidrolases/análise , Lágrimas/química , Adulto , Colagenases/análise , Feminino , Humanos , Interleucina-6/análise , Ceratocone/metabolismo , Masculino , Metaloproteinase 13 da Matriz/análise , Fator de Necrose Tumoral alfa/análiseRESUMO
PURPOSE: Keratoconus is a degenerating disease of the eye that results in an irregularly-shaped cornea. The etiology of the disease is unknown and the prognosis is difficult due to the variability in outcome. Keratoconus has been associated with eye rubbing, atopy, contact lens wear, as well as genetic conditions, such as Down's syndrome, Ehlers-Danlos syndrome, and Marfan's syndrome. Thinning of the cornea in keratoconus has been well studied and is documented to occur as a result of degradation of corneal collagen. The reason for this tissue degradation is unknown but has been hypothesized to be linked with proteases. METHODS: This study used a literature search to review the role of proteases and inflammatory molecules in the aetiology of keratoconus. RESULTS: Early studies demonstrated elevated levels of collagenolytic and gelatinolytic activities in laboratory cultures of keratoconic corneas. Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteins that include collagenases and gelatinases. MMPs levels are altered in keratoconus corneas compared to normal corneas and the level of tissue inhibitor of metalloproteinases-1 (TIMP-1) is decreased in keratoconic corneas. Recent studies have demonstrated the involvement of Cathepsin B, G, and K in keratoconus. Although thought to be a non-inflammatory disease, inflammatory molecules, such as interleukins and tumor necrosis factor have been shown to be elevated in keratoconus, and these inflammatory molecules may mediate production and activation of proteases. CONCLUSIONS: Proteases may be implicated in keratoconus. An in-depth investigation of these proteases may help in better understanding the course of the disease.