Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960133

RESUMO

Currently, one of the most serious global problems is the increasing incidence of infectious diseases. This is closely related to the increase in antibiotic use, which has resulted in the development of multidrug resistance in microorganisms. Another problem is the numerous microbiological contaminations of cosmetic products, which can lead to dangerous bacterial infections in humans. Natural fragrance raw materials exhibit a wide spectrum of biological properties, including antimicrobial properties. Despite their prevalence and availability on the commercial market, there is little research into their effects on multidrug-resistant microorganisms. This study examines the inhibitory effect of natural substances on Gram-positive and Gram-negative bacteria. For this purpose, screening and appropriate assays were carried out to determine the minimum inhibitory concentration (MIC) value of individual substances, using the alamarBlueTM reagent. The lowest MIC values were observed for Staphylococcus aureus (black seed (Nigella sativa) expressed oil, MIC = 25 µg/mL), Kocuria rhizophila (fir balsam absolute, MIC = 12.5 µg/mL), and Pseudomonas putida (cubeb oil and fir balsam absolute, MIC = 12.5 µg/mL). The most resistant Gram-negative species was Enterobacter gergoviae, while Staphylococcus epidermidis was the most resistant Gram-positive species.

2.
Toxicology ; 490: 153510, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059348

RESUMO

Despite the large number of odoriferous compounds available, new ones with interesting olfactory characteristics are desired due to their potentially high commercial value. Here, we report for the first time mutagenic, genotoxic, and cytotoxic effects, and antimicrobial properties of low-molecular fragrant oxime ethers, and we compare their properties with corresponding oximes and carbonyl compounds. 24 aldehydes, ketones, oximes, and oxime ethers were evaluated for mutagenic and cytotoxic effects in Ames (using Salmonella typhimurium strains TA 98 with genotype hisD3052, rfa, uvrB, pKM101, and TA100 with genotype hisG46, rfa, uvrB, pKM101, concentration range: 0.0781-40 mg/mL) and MTS (using HEK293T cell line concentration of tested substances: 0.025 mM) assays. Antimicrobial evaluation was carried out against Bacillus cereus (ATCC 10876), Staphylococcus aureus (ATCC 6538), Enterococcus hirae (ATCC 10541), Pseudomonas aeruginosa (ATCC 15442), Escherichia coli (ATCC 10536), Legionella pneumophila (ATCC 33152); Candida albicans (ATCC 10231) and Aspergillus brasiliensis (ATCC 16404) with concentration range of tested substances 9.375 - 2.400 mg/mL. Furthermore, 5 representatives of carbonyl compounds, oximes, and an oxime ether (stemone, buccoxime, citral, citral oxime, and propiophenone oxime O-ethyl ether) were evaluated for genotoxic properties in SOS-Chromotest (concentration range: 7.8·10-5 - 5·10-3 mg/mL). All of the tested compounds did not exhibit mutagenic, genotoxic, or cytotoxic effects. Oximes and oxime ethers showed relevant antimicrobial activity against pathogenic species (P. aeruginosa, S. aureus, E.coli, L. pneumophila, A. brasiliensis, C. albicans) in the MIC range 0.075 - 2.400 mg/mL compared to the common preservative methylparaben with the MIC range 0.400-3.600 mg/mL. Our study shows that oxime ethers have the potential to be used as fragrant agents in functional products.


Assuntos
Anti-Infecciosos , Antifúngicos , Humanos , Éteres/toxicidade , Mutagênicos , Oximas/toxicidade , Cetonas/farmacologia , Aldeídos/toxicidade , Odorantes , Staphylococcus aureus , Células HEK293 , Testes de Sensibilidade Microbiana , Anti-Infecciosos/toxicidade , Dano ao DNA
3.
Sci Rep ; 12(1): 5319, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351944

RESUMO

Due to market and legislative expectations, there is a constant need to explore new potential antimicrobial agents for functional perfumery. In this study, we evaluated the antimicrobial activity of 53 low molecular oximes and the corresponding carbonyl compounds against Escherichia coli, Enterococcus hirae, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, Aspergillus brasiliensis, Legionella pneumophila and Candida albicans. The most potent compound was α-isomethylionone oxime, which exhibited a minimum inhibitory concentration (MIC) of 18.75 µg/mL against E. hirae. The evaluation of the MICs for bacterial and fungal strains was performed for selected compounds, for example, the MIC of 2-phenylpropionaldehyde, cis-jasmone oxime, and trans-cinnamaldehyde measured against A. brasiliensis was 37.50 µg/mL. ADME-Tox (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assays were performed to assess the cytotoxicity of tested compounds. ADME-Tox indicated the safety and promising properties of selected compounds, which enables their usage as nontoxic supporting antibacterial agents. The results of the in vitro MTS assay were consistent with the ADME-Tox results. None of the compounds tested was toxic to Human Embryonic Kidney 293T (HEK293T) cells, with all cell viabilities exceeding 85%.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans , Células HEK293 , Humanos , Óleos Voláteis/farmacologia , Oximas/farmacologia , Extratos Vegetais
4.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068609

RESUMO

Terpenoids with lactone moieties have been indicated to possess high bioactivity. Certain terpenoid lactones exist in nature, in plants and animals, but they can also be obtained by chemical synthesis. Terpenoids possessing lactone moieties are known for their cytotoxic, anti-inflammatory, antimicrobial, anticancer, and antimalarial activities. Moreover, one terpenoid lactone, artemisinin, is used as a drug against malaria. Because of these abilities, there is constant interest in new terpenoid lactones that are both isolated and synthesized, and their biological activities have been verified. In some cases, the activity of the terpenoid lactone is specifically connected to the lactone moiety. Recent works have revealed that new terpenoid lactones can demonstrate such functions and are thus considered to be potential active agents against many diseases.


Assuntos
Artemisininas/química , Lactonas/química , Sesquiterpenos/química , Terpenos/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Artemisininas/síntese química , Artemisininas/uso terapêutico , Humanos , Lactonas/síntese química , Lactonas/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Sesquiterpenos/síntese química , Sesquiterpenos/uso terapêutico , Terpenos/síntese química , Terpenos/uso terapêutico
5.
Appl Microbiol Biotechnol ; 105(13): 5675-5687, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34164714

RESUMO

Cyanobacteria are characterized by a very high tolerance to environmental factors. They are found in salt water, fresh water, thermal springs, and Antarctic waters. The wide spectrum of habitats suitable for those microorganisms is related to their particularly effective metabolism; resistance to extreme environmental conditions; and the need for only limited environmental resources such as water, carbon dioxide, simple inorganic salts, and light. These metabolic characteristics have led to cyanobacterial blooms and the production of cyanotoxins, justifying research into effective ways to counteract the excessive proliferation of these microorganisms. A new and interesting idea for the immediate reduction of cyanobacterial abundance is to use natural substances with broad-spectrum biological activity to restore phytoplankton diversity. This study describes the effects of selected monoterpenoid derivatives on the development of cyanobacterial cultures. In the course of the study, some compounds ((±)-citronellal, (+)-α-pinene) showed the ability to inhibit the colonization of the tested photosynthetic bacteria, while others (eugenol, eucalyptol) stimulated the growth of these microorganisms. By analyzing the results of these experiments, information was obtained on the mutual relations of cyanobacteria and the tested monoterpenes, which are present in the aquatic environment. KEY POINTS: • Monoterpenoids significantly inhibit the growth of single cyanobacterial strains. • Monoterpenoids can inhibit the growth of cyanobacterial consortia. • Natural substances can control the growth of freshwater cyanobacteria.


Assuntos
Cianobactérias , Eutrofização , Regiões Antárticas , Água Doce , Monoterpenos/farmacologia
6.
Food Chem ; 301: 125283, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377615

RESUMO

A small library of 57 low molecular weight oximes was prepared from fragrant aldehydes and ketones, and their olfactory profiles were determined. The most substantive and interesting in terms of the sensory impressions were (+)-isomenthone oxime (fresh, musty, green) and cyclocitral oxime (earthy with patchouli, moss and leather notes). The linear retention indices (LRI) were determined for DB-1, DB-5 and DB-WAX columns, and E/Z isomers of 22 out of 57 compounds were resolved on the DB-5 column. Attempts were made to resolve enantiomers of the chosen oximes on chiral GC columns. The best results were obtained by using a Cyclosil B column, on which the enantiomers of camphor, menthone, piperitone and carvone oximes were fully resolved. NMR and MS spectra were acquired to characterize the synthesized library. Gas chromatography-olfactometry was used to assess odoriferous properties of both isomers of oximes. In most cases both isomers possessed similar profile and intensity.


Assuntos
Óleos Voláteis/química , Oximas/análise , Cromatografia Gasosa , Odorantes/análise , Olfatometria , Oximas/química , Estereoisomerismo , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA