Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400051, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666593

RESUMO

Bionic tissues offer an exciting frontier in biomedical research by integrating biological cells with artificial electronics, such as sensors. One critical hurdle is the development of artificial electronics that can mechanically harmonize with biological tissues, ensuring a robust interface for effective strain transfer and local deformation sensing. In this study, a highly tissue-integrative, soft mechanical sensor fabricated from a composite piezoresistive hydrogel. The composite not only exhibits exceptional mechanical properties, with elongation at the point of fracture reaching up to 680%, but also maintains excellent biocompatibility across multiple cell types. Furthermore, the material exhibits bioadhesive qualities, facilitating stable cell adhesion to its surface. A unique advantage of the formulation is the compatibility with 3D bioprinting, an essential technique for fabricating stable interfaces. A multimaterial sensorized 3D bionic construct is successfully bioprinted, and it is compared to structures produced via hydrogel casting. In contrast to cast constructs, the bioprinted ones display a high (87%) cell viability, preserve differentiation ability, and structural integrity of the sensor-tissue interface throughout the tissue development duration of 10 d. With easy fabrication and effective soft tissue integration, this composite holds significant promise for various biomedical applications, including implantable electronics and organ-on-a-chip technologies.

2.
Microsyst Nanoeng ; 9: 59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201103

RESUMO

The ability to control high-voltage actuator arrays relies, to date, on expensive microelectronic processes or on individual wiring of each actuator to a single off-chip high-voltage switch. Here we present an alternative approach that uses on-chip photoconductive switches together with a light projection system to individually address high-voltage actuators. Each actuator is connected to one or more switches that are nominally OFF unless turned ON using direct light illumination. We selected hydrogenated amorphous silicon (a-Si:H) as our photoconductive material, and we provide a complete characterization of its light to dark conductance, breakdown field, and spectral response. The resulting switches are very robust, and we provide full details of their fabrication processes. We demonstrate that the switches can be integrated into different architectures to support both AC and DC-driven actuators and provide engineering guidelines for their functional design. To demonstrate the versatility of our approach, we demonstrate the use of the photoconductive switches in two distinctly different applications-control of µm-sized gate electrodes for patterning flow fields in a microfluidic chamber and control of cm-sized electrostatic actuators for creating mechanical deformations for haptic displays.

3.
Adv Healthc Mater ; 12(18): e2300151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36911914

RESUMO

Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Músculo Esquelético , Bioimpressão/métodos , Engenharia Tecidual/métodos , Impressão Tridimensional , Hidrogéis/química
4.
Langmuir ; 35(40): 13070-13077, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31550166

RESUMO

We compare the electrostatically driven capture of flowing rod-shaped and spherical silica particles from dilute solutions onto a flow chamber wall that carries the opposite electrostatic charge from the particles. Particle accumulation and orientation are measured in time at a fixed region on the wall of a shear flow chamber. Rod-shaped particle aspect ratios are 2.5-3.2 and particle lengths are 1.3 and 2.67 µm for two samples, while sphere diameters were 0.72, 0.96, and 2.0 µm for three samples. At a moderate wall shear rate of 22 s-1, the particle accumulation for both rods and spheres is well described by diffusion-limited kinetics, demonstrating the limiting effect of particle diffusion in the near-wall boundary layer for electrostatically driven capture in this particle shape and size range. The significance of this finding is demonstrated in a calculation that shows that for delivery applications, nearly the same (within 10%) particle volume or mass is delivered to a surface at the diffusion-limited rate by rods and spheres. Therefore, in the absence of other motivating factors, the expense of developing rod-shaped microscale delivery packages to enhance capture from flow in the diffusion-limited simple shear regime is unwarranted. It is also interesting that the captured orientations of the larger rods, 2.6 µm in average length, were highly varied and insensitive to flow: a substantial fraction of rods were trapped in standing and slightly leaning orientations, touching the surface by their ends. Additionally, for particles that were substantially tipped over, there was only modest orientation in the flow direction. Taken together, these findings suggest that on the time scale of near-surface particle rotations, adhesion events are fast, trapping particles in orientations that do not necessarily maximize their favored adhesive contact or reduce hydrodynamic drag.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA