Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806573

RESUMO

Eight novel metal-free organic sensitizers were proposed for dye-sensitized solar cells (DSSCs), theoretically calculated and studied via density functional theory with D-π-A structure. These proposals were formed to study the effect of novel π-bridges, using carbazole as the donor group and cyanoacrylic acid as the anchorage group. Through the M06/6-31G(d) level of theory, ground state geometry optimization, vibrational frequencies, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were calculated. Further, chemical reactivity parameters were obtained and analyzed, such as chemical hardness (η), electrophilicity index (ω), electroaccepting power (ω+) and electrodonating power (ω-). Free energy of electron injection (ΔGinj) and light-harvesting efficiency (LHE) also were calculated and discussed. On the other hand, absorption wavelengths, oscillator strengths, and electron transitions were calculated through time-dependent density functional theory with the M06-2X/6-31G(d) level of theory. In conclusion, the inclusion of thiophene groups and the Si heteroatom in the π-bridge improved charge transfer, chemical stability, and other optoelectronic properties of carbazole-based dyes.


Assuntos
Carbazóis/química , Corantes/química , Modelos Químicos , Energia Solar
2.
Molecules ; 24(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671874

RESUMO

Ten molecules were theoretically calculated and studied through density functional theory with the M06 density functional and the 6-31G(d) basis set. The molecular systems have potential applications as sensitizers for dye-sensitized solar cells. Three molecules were taken from the literature, and seven are proposals inspired in the above, including the azomethine group in the π-bridge expecting a better charge transfer. These molecular structures are composed of triphenylamine (donor part); different combinations of azomethine, thiophene, and benzene derivatives (π-bridge); and cyanoacrylic acid (acceptor part). This study focused on the effect that the azomethine group caused on the π-bridge. Ground-state geometry optimization, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were obtained and analyzed. Absorption wavelengths, oscillator strengths, and electron transitions were obtained via time-dependent density functional theory using the M06-2X density functional and the 6-31G(d) basis set. The free energy of electron injection (ΔGinj) was calculated and analyzed. As an important part of this study, chemical reactivity parameters are discussed, such as chemical hardness, electrodonating power, electroaccepting power, and electrophilicity index. In conclusion, the inclusion of azomethine in the π-bridge improved the charge transfer and the electronic properties of triphenylamine-based dyes.


Assuntos
Aminas/química , Compostos Azo/química , Corantes/química , Modelos Moleculares , Luz Solar , Tiossemicarbazonas/química , Dureza , Oxirredução , Espectrofotometria Ultravioleta , Termodinâmica
3.
Acta Crystallogr C Struct Chem ; 74(Pt 4): 452-459, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620029

RESUMO

Boronic esters are useful building blocks for crystal engineering and the generation of supramolecular architectures, including macrocycles, cages and polymers (one-, two- and three-dimensional), with potential utility in diverse fields such as separation, storage and luminescent materials. The novel dinuclear cyanophenylboronic ester described herein, namely 4,4'-(2,4,8,10-tetraoxa-3,9-diboraspiro[5.5]undecane-3,9-diyl)dibenzonitrile, C19H16B2N2O4, was prepared by condensation of 4-cyanophenylboronic acid and pentaerythritol and fully characterized by elemental analysis, IR and NMR (1H and 11B) spectroscopy, single-crystal X-ray diffraction analysis and TG-DSC (thermogravimetry-differential scanning calorimetry) studies. In addition, the photophysical properties were examined in solution and in the solid state by UV-Vis and fluorescence spectroscopies. Density functional theory (DFT) calculations with ethanol as solvent reproduced reasonably well the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) of the title compound. Hirshfeld surface and fingerprint plot analyses are presented to illustrate the supramolecular connectivity in the solid state.

4.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 280-286, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257026

RESUMO

The possibility of using less expensive and nontoxic metals, such as copper, as substitutes for more expensive heavy metals in the synthesis of new transition-metal complexes to be used as sensitizers in dye-sensitized solar cells (DSSCs) has stimulated research in this field. The novel photoluminescent copper(I) complex bis(triphenylphosphane-κP)[trans-(±)-2,4,5-tris(pyridin-2-yl)-2-imidazoline-κ2N2,N3]copper(I) hexafluorophosphate, [CuI(C18H15N5)(C18H15P)2]PF6, has been successfully synthesized and characterized by IR and 1H NMR spectroscopy, as well as by single-crystal X-ray diffraction and thermogravimetric analysis. The complex showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy. Density functional theory (DFT) calculations with dichloromethane as solvent reproduced reasonably well the HOMO and LUMO orbitals of the title compound.

5.
Phys Chem Chem Phys ; 17(21): 14122-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25959071

RESUMO

A group of dyes derived from coumarin was studied, which consisted of nine molecules using a very similar manufacturing process of dye sensitized solar cells (DSSCs). Optimized geometries, energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and ultraviolet-visible spectra were obtained using theoretical calculations, and they were also compared with experimental conversion efficiencies of the DSSC. The representation of an excited state in terms of natural transition orbitals (NTOs) was studied. Chemical reactivity parameters were calculated and correlated with the experimental data linked to the efficiency of the DSSC. A new proposal was obtained to design new molecular systems and to predict their potential use as a dye in DSSCs.

6.
J Mol Model ; 20(8): 2378, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25060149

RESUMO

UV-Vis spectra were calculated using time-dependent density functional theory for the chrysanthemin pigment, which is used as natural dye in dye sensitized solar cells. To this end, we studied four different calculation protocols in order to obtain the best approximation according to the maximum absorption wavelength (λmax) of the experimental spectrum. Furthermore, the optimized geometry, highest occupied molecular orbitals, lowest unoccupied molecular orbitals and electron density were calculated and analyzed. Several chemical models were used with and without the presence of the chlorine atom: the chosen functionals, B3LYP, PBE0 and the M06 family, represent various approximations with different fractions of Hartree-Fock exchange energy. These functionals were combined with the 6-31+G (d), 6-311+G (d) and the MIDIX+basis sets. All of these calculation protocols proved a good option, though the B3LYP/MIDIX+chemistry model was the best for predicting the λmax value, using the equilibrium calculation protocol (M1a) in the presence of chlorine.

7.
Int J Mol Sci ; 13(4): 4418-4432, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605987

RESUMO

In this work we studied three dyes which are proposed for potential photovoltaic applications and named Dye7, Dye7-2t and Dye7-3t. The Density Functional Theory (DFT) was utilized, using the M05-2X hybrid meta-GGA functional and the 6-31+G(d,p) basis set. This level of calculation was used to find the optimized molecular structure and to predict the main molecular vibrations, the absorption and emission spectra, the molecular orbitals energies, dipole moment, isotropic polarizability and the chemical reactivity parameters that arise from Conceptual DFT. Also, the pK(a) values were calculated with the semi-empirical PM6 method.


Assuntos
Compostos de Anilina/química , Corantes/química , Energia Solar , Modelos Moleculares , Estrutura Molecular , Análise Espectral , Coloração e Rotulagem
8.
J Mol Model ; 18(3): 835-42, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21597962

RESUMO

Organic dyes have great potential for its use in solar cells. In this recent work, the molecular structure and properties of Dye 7 were obtained using density functional theory (DFT) and different levels of calculation. Upon comparing the molecular structure and the ultraviolet visible spectrum with experimental data reported in the literature, it was found that the M05-2X/6-31G(d) level of calculation gave the best approximation. Once the appropriate methodology had been obtained, the molecule was characterized by obtaining the infrared spectrum, dipole moment, total energy, isotropic polarizability, molecular orbital energies, free energy of solvation in different solvents, and the chemical reactivity sites using the condensed Fukui functions.


Assuntos
Benzotiazóis/química , Carbocianinas/química , Fenômenos Químicos , Modelos Moleculares , Eletroquímica , Elétrons , Estrutura Molecular , Fotoquímica , Solubilidade , Termodinâmica
9.
Int J Mol Sci ; 13(12): 16005-19, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23443107

RESUMO

In this work, we studied a copper complex-based dye, which is proposed for potential photovoltaic applications and is named Cu (I) biquinoline dye. Results of electron affinities and ionization potentials have been used for the correlation between different levels of calculation used in this study, which are based on The Density Functional Theory (DFT) and time-dependent (TD) DFT. Further, the maximum absorption wavelengths of our theoretical calculations were compared with the experimental data. It was found that the M06/LANL2DZ + DZVP level of calculation provides the best approximation. This level of calculation was used to find the optimized molecular structure and to predict the main molecular vibrations, the molecular orbitals energies, dipole moment, isotropic polarizability and the chemical reactivity parameters that arise from Conceptual DFT.


Assuntos
Simulação por Computador , Cobre/química , Modelos Químicos , Quinolinas/química , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA