RESUMO
Neuroinflammation and microthrombosis may be underlying mechanisms of brain injury after aneurysmal subarachnoid hemorrhage (aSAH), but they have not been studied in relation to each other. In postmortem brain tissue, we investigated neuroinflammation by studying the microglial and astrocyte response in the frontal cortex of 11 aSAH and 10 control patients. In a second study, we investigated the correlation between microthrombosis and microglia by studying the microglial surface area around vessels with and without microthrombosis in the frontal cortex and hippocampus of 8 other aSAH patients. In comparison with controls, we found increased numbers of microglia (mean ± SEM 50 ± 8 vs 20 ± 5 per 0.0026 mm³, p < 0.01), an increased surface area (%) of microglia (mean ± SEM 4.2 ± 0.6 vs 2.2 ± 0.4, p < 0.05), a higher intensity of the astrocytic intermediate filament protein glial fibrillary acidic protein (GFAP) (mean ± SEM 184 ± 28 vs 92 ± 23 arbitrary units, p < 0.05), and an increased GFAP surface area (%) (mean ± SEM 21.2 ± 2.6 vs 10.7 ± 2.1, p < 0.01) in aSAH tissue. Microglia surface area was approximately 40% larger around vessels with microthrombosis than those without microthrombosis (estimated marginal means [95% CI]; 6.1 [5.4-6.9] vs 4.3 [3.6-5.0], p < 0.001). Our results show that the microglial and astrocyte surface areas increased after aSAH and that microthrombosis and microglia are interrelated.
Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Doenças Neuroinflamatórias , Autopsia , Encéfalo/metabolismo , Microglia/metabolismoRESUMO
Stroke risk in children with sickle cell disease (SCD) is currently assessed with routine transcranial Doppler ultrasound (TCD) measurements of blood velocity in the Circle of Willis (CoW). However, there is currently no biomarker with proven prognostic value in adult patients. Four-dimensional (4D) flow magnetic resonance imaging (MRI) may improve risk profiling based on intracranial haemodynamics. We conducted neurovascular 4D flow MRI and blood sampling in 69 SCD patients [median age 15 years (interquartile range, IQR: 12-50)] and 14 healthy controls [median age 21 years (IQR: 18-43)]. We measured velocity, flow, lumen area and endothelial shear stress (ESS) in the CoW. SCD patients had lower haematocrit and viscosity, and higher velocity, flow and lumen area, with lower ESS compared to healthy controls. We observed significant age-related decline in haemodynamic 4D flow parameters; velocity (Spearman's ρ = -0·36 to -0·61), flow (ρ = -0·26 to -0·52) and ESS (ρ = -0·14 to -0·54) in SCD patients. Further analysis in only adults showed that velocity values were similar in SCD patients compared to healthy controls, but that the additional 4D flow parameters, flow and lumen area, were higher, and ESS lower, in the SCD group. Our data suggest that 4D flow MRI may identify adult patients with an increased stroke risk more accurately than current TCD-based velocity.