Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39062166

RESUMO

Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors. In this study, we investigated the impact of voluntary exercise in EtOH-dependent mice on EtOH consumption, KOR and delta opioid receptor (DOR) expression in the NAc and VTA, and functional effects on EtOH-induced alterations in DA release in the NAc. Our findings reveal that voluntary exercise reduces EtOH consumption, reduces KOR and enhances DOR expression in the NAc, and modifies EtOH-induced adaptations in DA release, suggesting a competitive interaction between exercise-induced and EtOH-induced alterations in KOR expression. We also found changes to DOR expression in the NAc and VTA with voluntary exercise but no significant changes to DA release. These findings elucidate the complex interplay of AUD-related neurobiological processes, highlighting the potential for exercise as a therapeutic intervention for AUD.

2.
Cell Biosci ; 14(1): 50, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632622

RESUMO

Ivermectin (IVM) is a commonly prescribed antiparasitic treatment with pharmacological effects on invertebrate glutamate ion channels resulting in paralysis and death of invertebrates. However, it can also act as a modulator of some vertebrate ion channels and has shown promise in facilitating L-DOPA treatment in preclinical models of Parkinson's disease. The pharmacological effects of IVM on dopamine terminal function were tested, focusing on the role of two of IVM's potential targets: purinergic P2X4 and nicotinic acetylcholine receptors. Ivermectin enhanced electrochemical detection of dorsal striatum dopamine release. Although striatal P2X4 receptors were observed, IVM effects on dopamine release were not blocked by P2X4 receptor inactivation. In contrast, IVM attenuated nicotine effects on dopamine release, and antagonizing nicotinic receptors prevented IVM effects on dopamine release. IVM also enhanced striatal cholinergic interneuron firing. L-DOPA enhances dopamine release by increasing vesicular content. L-DOPA and IVM co-application further enhanced release but resulted in a reduction in the ratio between high and low frequency stimulations, suggesting that IVM is enhancing release largely through changes in terminal excitability and not vesicular content. Thus, IVM is increasing striatal dopamine release through enhanced cholinergic activity on dopamine terminals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA