Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 10(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35885029

RESUMO

The development of anti-drug antibodies represents a significant barrier to the utilization of protein-based therapies for a wide variety of diseases. While the rate of antibody formation can vary depending on the therapeutic employed and the target patient population receiving the drug, the antigen-specific immune response underlying the development of anti-drug antibodies often remains difficult to define. This is especially true for patients with hemophilia A who, following exposure, develop antibodies against the coagulation factor, factor VIII (FVIII). Models capable of studying this response in an antigen-specific manner have been lacking. To overcome this challenge, we engineered FVIII to contain a peptide (323-339) from the model antigen ovalbumin (OVA), a very common tool used to study antigen-specific immunity. FVIII with an OVA peptide (FVIII-OVA) retained clotting activity and possessed the ability to activate CD4 T cells specific to OVA323-339 in vitro. When compared to FVIII alone, FVIII-OVA also exhibited a similar level of immunogenicity, suggesting that the presence of OVA323-339 does not substantially alter the anti-FVIII immune response. Intriguingly, while little CD4 T cell response could be observed following exposure to FVIII-OVA alone, inclusion of anti-FVIII antibodies, recently shown to favorably modulate anti-FVIII immune responses, significantly enhanced CD4 T cell activation following FVIII-OVA exposure. These results demonstrate that model antigens can be incorporated into a therapeutic protein to study antigen-specific responses and more specifically that the CD4 T cell response to FVIII-OVA can be augmented by pre-existing anti-FVIII antibodies.

2.
Front Immunol ; 13: 880829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634288

RESUMO

Humoral immunity to factor VIII (FVIII) represents a significant challenge for the treatment of patients with hemophilia A. Current paradigms indicate that neutralizing antibodies against FVIII (inhibitors) occur through a classical CD4 T cell, germinal center (GC) dependent process. However, clinical observations suggest that the nature of the immune response to FVIII may differ between patients. While some patients produce persistent low or high inhibitor titers, others generate a transient response. Moreover, FVIII reactive memory B cells are only detectable in some patients with sustained inhibitor titers. The determinants regulating the type of immune response a patient develops, let alone how the immune response differs in these patients remains incompletely understood. One hypothesis is that polymorphisms within immunoregulatory genes alter the underlying immune response to FVIII, and thereby the inhibitor response. Consistent with this, studies report that inhibitor titers to FVIII differ in animals with the same F8 pathogenic variant but completely distinct backgrounds; though, how these genetic disparities affect the immune response to FVIII remains to be investigated. Given this, we sought to mechanistically dissect how genetics impact the underlying immune response to FVIII. In particular, as the risk of producing inhibitors is weakly associated with differences in HLA, we hypothesized that genetic factors other than HLA influence the immune response to FVIII and downstream inhibitor formation. Our data demonstrate that FVIII deficient mice encoding the same MHC and F8 variant produce disparate inhibitor titers, and that the type of inhibitor response formed associates with the ability to generate GCs. Interestingly, the formation of antibodies through a GC or non-GC pathway does not appear to be due to differences in CD4 T cell immunity, as the CD4 T cell response to an immunodominant epitope in FVIII was similar in these mice. These results indicate that genetics can impact the process by which inhibitors develop and may in part explain the apparent propensity of patients to form distinct inhibitor responses. Moreover, these data highlight an underappreciated immunological pathway of humoral immunity to FVIII and lay the groundwork for identification of biomarkers for the development of approaches to tolerize against FVIII.


Assuntos
Hemofilia A , Hemostáticos , Animais , Anticorpos Neutralizantes , Fator VIII , Centro Germinativo/metabolismo , Humanos , Camundongos
3.
J Thromb Haemost ; 20(3): 574-588, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863021

RESUMO

BACKGROUND: A portion of individuals with hemophilia A develop neutralizing antibodies called inhibitors to glycoprotein factor VIII (FVIII). There are multiple risk factors that contribute to the risk of inhibitor formation. However, knowledge of the role of FVIII asparagine (N)-linked glycosylation in FVIII immunity is limited. OBJECTIVE: To evaluate the effect of site-specific N-linked glycan removal on FVIII biochemical properties, endocytosis by murine bone marrow-derived dendritic cells (BMDCs), and antibody responses. METHODS: Four recombinant B domain-deleted (BDD) FVIII variants with single-site amino acid substitutions to remove N-linked glycans were produced for experimental assays. RESULTS: BDD FVIII-N41G, FVIII-N239A, FVIII-N1810A, and FVIII-N2118A with confirmed removal of N-linked glycans and similar glycosylation profiles to BDD FVIII were produced. There were no differences in thrombin activation or von Willebrand factor binding of FVIII variants compared with BDD FVIII; however, reduced FVIII expression, activity, and specific activity was observed with all variants. BDD FVIII-N41G and FVIII-N1810A had reduced uptake by BMDCs, but there were no differences in antibody development in immunized hemophilia A mice compared with BDD FVIII. Half of a repertoire of 12 domain-specific FVIII MAbs had significantly reduced binding to ≥1 FVIII variant with a 50% decrease in A1 domain MAb 2-116 binding to FVIII-N239A. CONCLUSIONS: Modifications of FVIII N-linked glycans reduced FVIII endocytosis by BMDCs and binding of domain-specific FVIII MAbs, but did not alter de novo antibody production in hemophilia A mice, suggesting that N-glycans do not significantly contribute to inhibitor formation.


Assuntos
Fator VIII , Hemofilia A , Animais , Anticorpos Monoclonais , Camundongos , Polissacarídeos , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA