Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(6): 109871, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784005

RESUMO

For dexterous control of the hand, humans integrate sensory information and prior knowledge regarding their bodies and the world. We studied the role of touch in hand motor control by challenging a fundamental prior assumption-that self-motion of inanimate objects is unlikely upon contact. In a reaching task, participants slid their fingertips across a robotic interface, with their hand hidden from sight. Unbeknownst to the participants, the robotic interface remained static, followed hand movement, or moved in opposition to it. We considered two hypotheses. Either participants were able to account for surface motion or, if the stationarity assumption held, they would integrate the biased tactile cues and proprioception. Motor errors consistent with the latter hypothesis were observed. The role of visual feedback, tactile sensitivity, and friction was also investigated. Our study carries profound implications for human-machine collaboration in a world where objects may no longer conform to the stationarity assumption.

2.
Front Comput Neurosci ; 17: 1108311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936193

RESUMO

Our previous articles demonstrated how to analyze psychophysical data from a group of participants using generalized linear mixed models (GLMM) and two-level methods. The aim of this article is to revisit hierarchical models in a Bayesian framework. Bayesian models have been previously discussed for the analysis of psychometric functions although this approach is still seldom applied. The main advantage of using Bayesian models is that if the prior is informative, the uncertainty of the parameters is reduced through the combination of prior knowledge and the experimental data. Here, we evaluate uncertainties between and within participants through posterior distributions. To demonstrate the Bayesian approach, we re-analyzed data from two of our previous studies on the tactile discrimination of speed. We considered different methods to include a priori knowledge in the prior distribution, not only from the literature but also from previous experiments. A special type of Bayesian model, the power prior distribution, allowed us to modulate the weight of the prior, constructed from a first set of data, and use it to fit a second one. Bayesian models estimated the probability distributions of the parameters of interest that convey information about the effects of the experimental variables, their uncertainty, and the reliability of individual participants. We implemented these models using the software Just Another Gibbs Sampler (JAGS) that we interfaced with R with the package rjags. The Bayesian hierarchical model will provide a promising and powerful method for the analysis of psychometric functions in psychophysical experiments.

3.
Exp Brain Res ; 240(12): 3193-3206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271939

RESUMO

Several studies have reported the existence of reciprocal interactions between the type of motor activity physically performed on objects and the conceptual knowledge that is retained of them. Whether covert motor activity plays a similar effect is less clear. Certainly, objects are strong triggers for actions, and motor components can make the associated concepts more memorable. However, addition of an action-related memory trace may not always be automatic and could rather depend on 'how' objects are encountered. To test this hypothesis, we compared memory for objects that passive observers experienced as verbal labels (the word describing them), visual images (color photographs) and actions (pantomimes of object use). We predicted that the more direct the involvement of action-related representations the more effective would be the addition of a motor code to the experience and the more accurate would be the recall. Results showed that memory for objects presented as words i.e., a format that might only indirectly prime the sensorimotor system, was generally less accurate compared to memory for objects presented as photographs or pantomimes, which are more likely to directly elicit motor simulation processes. In addition, free recall of objects experienced as pantomimes was more accurate when these items afforded actions performed towards one's body than actions directed away from the body. We propose that covert motor activity can contribute to objects' memory, but the beneficial addition of a motor code to the experience is not necessarily automatic. An advantage is more likely to emerge when the observer is induced to take a first-person stance during the encoding phase, as may happen for objects affording actions directed towards the body, which obviously carry more relevance for the actor.


Assuntos
Rememoração Mental , Humanos
4.
Front Psychol ; 13: 906643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800945

RESUMO

Over the last few years online platforms for running psychology experiments beyond simple questionnaires and surveys have become increasingly popular. This trend has especially increased after many laboratory facilities had to temporarily avoid in-person data collection following COVID-19-related lockdown regulations. Yet, while offering a valid alternative to in-person experiments in many cases, platforms for online experiments are still not a viable solution for a large part of human-based behavioral research. Two situations in particular pose challenges: First, when the research question requires design features or participant interaction which exceed the customization capability provided by the online platform; and second, when variation among hardware characteristics between participants results in an inadmissible confounding factor. To mitigate the effects of these limitations, we developed ReActLab (Remote Action Laboratory), a framework for programming remote, browser-based experiments using freely available and open-source JavaScript libraries. Since the experiment is run entirely within the browser, our framework allows for portability to any operating system and many devices. In our case, we tested our approach by running experiments using only a specific model of Android tablet. Using ReActLab with this standardized hardware allowed us to optimize our experimental design for our research questions, as well as collect data outside of laboratory facilities without introducing setup variation among participants. In this paper, we describe our framework and show examples of two different experiments carried out with it: one consisting of a visuomotor adaptation task, the other of a visual localization task. Through comparison with results obtained from similar tasks in in-person laboratory settings, we discuss the advantages and limitations for developing browser-based experiments using our framework.

5.
Neuroscience ; 453: 124-137, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010347

RESUMO

Observers typically present a strong bias in estimating the orientation of a visual bar when their body is tilted >60° in the roll plane and in the absence of visual background information. Known as the A-effect, this phenomenon likely results from the under-compensation of body tilt. Static visual cues can reduce such bias in the perceived vertical. Yet, it is unknown whether dynamic visual cues would be also effective. Here we presented projectile motions of a visual target along parabolic trajectories with different orientations relative to physical gravity. The aim of the experiment was twofold: First, we assessed whether the projectile motions could bias the estimation of the perceived orientation of a visual bar, measured with a classical subjective visual vertical (SVV) task. Second, we evaluated whether the ability to estimate time-to-contact of the visual target in an interception task was influenced by the orientation of these parabolic trajectories. Two groups of participants performed the experiment, either with their head and body tilted 90° along the roll plane or in an upright position. We found that the perceived orientation of the visual bar in the SVV task was affected by the orientation of the parabolic trajectories. This result was present in the tilted but not in the upright participants. In the interception task, the timing error increased linearly as a function of the orientation of the parabola. These results support the hypothesis that a gravity vector estimated from dynamic visual stimuli contributes to the subjective visual vertical.


Assuntos
Orientação , Percepção Espacial , Sinais (Psicologia) , Gravitação , Movimentos da Cabeça , Humanos , Percepção Visual
6.
Exp Brain Res ; 235(7): 1999-2010, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28326440

RESUMO

Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.


Assuntos
Gravitação , Percepção de Movimento/fisiologia , Equilíbrio Postural/fisiologia , Postura , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Propriocepção , Psicofísica , Visão Ocular/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA