Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673708

RESUMO

Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5'- and 3'-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385-hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Quadruplex G , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Galinhas , Cricetinae , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Infecções por Orthomyxoviridae/virologia
2.
Nucleic Acid Ther ; 30(3): 175-187, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31990606

RESUMO

Nucleic acid aptamers have been proven to be a useful tool in many applications. Particularly, aptamers to epidermal growth factor receptor (EGFR) have been successfully used for the recognition of EGFR-expressing cells, the inhibition of EGFR-dependent pathways, and targeted drug delivery into EGFR-positive cells. Several aptamers are able to discriminate wild-type EGFR from its mutant form, EGFRvIII. Aptamers to EGFR have hairpin-like secondary structures with several possible folding variations. Here, an aptamer, previously selected to EGFRvIII, was chosen as a lead compound for extensive post-SELEX maturation. The aptamer was 1.5-fold truncated, the ends of the hairpin stem were appended with GC-pairs to increase thermal stability, and single pyrene modification was introduced into the aptamer to increase affinity to the target protein. Pyrene modification was selected from extensive computer docking studies of a library of thousands of chemicals to EGFR near the EGF-binding interface. The resulting aptamers bound extracellular domains of both variants of EGFR: EGFRwt and EGFRvIII with subnanomolar apparent dissociation constants. Compared with the initial aptamer, affinity to EGFRwt was increased up to 7.5-fold, whereas affinity to EGFRvIII was increased up to 4-fold.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Receptores ErbB/metabolismo , Corantes Fluorescentes/química , Pirenos/química , Animais , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Sítios de Ligação , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/química , Receptores ErbB/genética , Expressão Gênica , Humanos , Cinética , Células MCF-7 , Simulação de Acoplamento Molecular , Neuroglia/metabolismo , Neuroglia/patologia , Conformação de Ácido Nucleico , Ligação Proteica , Ratos , Técnica de Seleção de Aptâmeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA