Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Appl ; 17(5): e13639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721592

RESUMO

Genetic assessment of species that have experienced dramatic population declines provides critical information that is instrumental for the design of conservation recovery programs. Here, we use different sources of molecular data (mtDNA and ddRAD-seq) to evaluate the genetic status of wild and captive populations of marbled teal (Marmaronetta angustirostris), a duck species classified as critically endangered in Spain and near threatened at a global scale. First, we determined the evolutionary and demographic trajectories of the wild population from Spain and the currently much larger population from Iraq, which is also the documented source of European zoo stocks. Second, we evaluated the suitability of the different captive populations for ongoing restocking programs in Spain and assessed their potential impact on the genetic composition of wild populations. Populations from Spain and Iraq were assigned to distinct genetic clusters, albeit with an overall low level of genetic differentiation, in line with their recent divergence (<8000 years ago) and lack of phylogeographic structure in the species. Demogenomic inferences revealed that the two populations have experienced parallel demographic trajectories, with a marked bottleneck during the last glacial period followed by a sudden demographic expansion and stability since the onset of the Holocene. The wild population from Spain presented high levels of inbreeding, but we found no evidence of recent genetic bottlenecks compatible with the human-driven decline of the species during the past century. The captive populations from the two Spanish centers involved in restocking programs showed genetic introgression from European zoos; however, we found limited evidence of introgression from the zoo genetic stock into the wild population from Spain, suggesting captive-bred birds have limited breeding success in the wild. Our study illustrates how ex situ conservation programs should consider the genetic distinctiveness of populations when establishing breeding stocks and highlights the importance of genetically assessing captive populations prior to reinforcement actions.

2.
Evol Appl ; 17(2): e13629, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343777

RESUMO

Conservation translocations often inherently involve a risk of genetic diversity loss, and thus loss of adaptive potential, but this risk is rarely quantified or monitored through time. The reintroduction of beavers to Scotland, via the Scottish Beaver Trial in Knapdale, is an example of a translocation that took place in the absence of genetic data for the founder individuals and resulted in a small and suspected to be genetically depauperate population. In this study we use a high-density SNP panel to assess the genetic impact of that initial translocation and the effect of subsequent reinforcement translocations using animals from a different genetic source to the original founders. We demonstrate that the initial translocation did, indeed, lead to low genetic diversity (H o = 0.052) and high mean kinship (KING-robust = 0.159) in the Knapdale population compared to other beaver populations. We also show that the reinforcement translocations have succeeded in increasing genetic diversity (H o = 0.196) and reducing kinship (KING robust = 0.028) in Knapdale. As yet, there is no evidence of admixture between the two genetic lineages that are now present in Knapdale and such admixture is necessary to realise the full genetic benefits of the reinforcement and for genetic reinforcement and then rescue to occur; future genetic monitoring will be required to assess whether this has happened. We note that, should admixture occur, the Knapdale population will harbour combinations of genetic diversity not currently seen elsewhere in Eurasian beavers, posing important considerations for the future management of this population. We consider our results in the wider context of beaver conservation throughout Scotland and the rest of Britain, and advocate for more proactive genetic sampling of all founders to allow the full integration of genetic data into translocation planning in general.

3.
Proc Natl Acad Sci U S A ; 120(18): e2210756120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098062

RESUMO

In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.


Assuntos
Antílopes , Endogamia , Animais , Antílopes/genética , Genótipo , Homozigoto , Alelos , Polimorfismo de Nucleotídeo Único , Mutação
4.
Evol Appl ; 16(1): 111-125, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699120

RESUMO

Threatened species are frequently patchily distributed across small wild populations, ex situ populations managed with varying levels of intensity and reintroduced populations. Best practice advocates for integrated management across in situ and ex situ populations. Wild addax (Addax nasomaculatus) now number fewer than 100 individuals, yet 1000 of addax remain in ex situ populations, which can provide addax for reintroductions, as has been the case in Tunisia since the mid-1980s. However, integrated management requires genetic data to ascertain the relationships between wild and ex situ populations that have incomplete knowledge of founder origins, management histories, and pedigrees. We undertook a global assessment of genetic diversity across wild, ex situ and reintroduced populations in Tunisia to assist conservation planning for this Critically Endangered species. We show that the remnant wild populations retain more mitochondrial haplotypes that are more diverse than the entirety of the ex situ populations across Europe, North America and the United Arab Emirates, and the reintroduced Tunisian population. Additionally, 1704 SNPs revealed that whilst population structure within the ex situ population is minimal, each population carries unique diversity. Finally, we show that careful selection of founders and subsequent genetic management is vital to ensure genetic diversity is provided to, and minimize drift and inbreeding within reintroductions. Our results highlight a vital need to conserve the last remaining wild addax population, and we provide a genetic foundation for determining integrated conservation strategies to prevent extinction and optimize future reintroductions.

5.
Immunogenetics ; 63(8): 523-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21494955

RESUMO

Genes of the major histocompatibility complex (MHC) have received much attention in immunology, genetics, and ecology because they are highly polymorphic and play important roles in parasite resistance and mate choice. Until recently, the MHC of passerine birds was not well-described. However, the genome sequencing of the zebra finch (Taeniopygia guttata) has partially redressed this gap in our knowledge of avian MHC genes. Here, we contribute further to the understanding of the zebra finch MHC organization by mapping SNPs within or close to known MHC genes in the zebra finch genome. MHC class I and IIB genes were both mapped to zebra finch chromosome 16, and there was no evidence that MHC class I genes are located on chromosome 22 (as suggested by the genome assembly). We confirm the location in the MHC region on chromosome 16 for several other genes (BRD2, FLOT1, TRIM7.2, GNB2L1, and CSNK2B). Two of these (CSNK2B and FLOT1) have not previously been mapped in any other bird species. In line with previous results, we also find that orthologs to the immune-related genes B-NK and CLEC2D, which are part of the MHC region in chicken, are situated on zebra finch chromosome Z and not among other MHC genes in the zebra finch.


Assuntos
Tentilhões/genética , Complexo Principal de Histocompatibilidade , Animais , Cromossomos , Evolução Molecular , Tentilhões/imunologia , Ligação Genética , Haplótipos , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único
6.
Trends Genet ; 26(6): 275-84, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20444518

RESUMO

Over the past decade, long-term studies of vertebrate populations have been the focus of many quantitative genetic studies. As a result, we have a clearer understanding of why some fitness-related traits are heritable and under selection, but are apparently not evolving. An exciting extension of this work is to identify the genes underlying phenotypic variation in natural populations. The advent of next-generation sequencing and high-throughput single nucleotide polymorphism (SNP) genotyping platforms means that mapping studies are set to become widespread in those wild populations for whom appropriate phenotypic data and DNA samples are available. Here, we highlight the progress made in this area and define evolutionary genetic questions that have become tractable with the arrival of these new genomics technologies.


Assuntos
Vertebrados/genética , Animais , Mapeamento Cromossômico , Evolução Molecular , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA