Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(50): e202306904, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650332

RESUMO

The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.

2.
ACS Appl Mater Interfaces ; 14(41): 47066-47074, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36214734

RESUMO

The optimal performance of organic electrodes for aqueous batteries requires their full compatibility with selected electrolyte solutions. Electrode materials having 1-3-dimensional structures of variable rigidity possess a confined space in their structure filled with water and electrolyte solutions. Depending on the rigidity and confined space geometry, insertion and extraction of ions into electrode structures are often coupled with incorporation/withdrawal of water molecules. Aside from the scientific interest in understanding the charging mechanism of such systems, co-insertion of solvent molecules affects strongly the charge storage capability of the electrodes for energy storage devices. We present herein in situ electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) investigations of polyaniline (PANI) electrodes operating in various aqueous Na+-containing electrolytes, namely, Na2SO4, NaClO4, NaBF4, and NaPF6. Careful analysis of the EQCM-D results provides a dynamic snapshot of the mixed anionic/protonic fluxes and the accompanying water molecules' insertion/extraction to/from the PANI electrodes. Based on our observations, it was found that the charging mechanism, as well as the capacity values, strictly depends on the electrolyte pH, the chaotropic/kosmotropic character of the anionic dopants, and the amount of the extracted water molecules. This study demonstrates the effectiveness of analysis by EQCM-D in selecting electrolytes for batteries comprising organic electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA