Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Neurosurgery ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687046

RESUMO

BACKGROUND AND OBJECTIVES: Maximizing the extent of resection (EOR) improves outcomes in glioblastoma (GBM). However, previous GBM studies have not addressed the EOR impact in molecular subgroups beyond IDH1/IDH2 status. In the current article, we evaluate whether EOR confers a benefit in all GBM subtypes or only in particular molecular subgroups. METHODS: A retrospective cohort of newly diagnosed GBM isocitrate dehydrogenase (IDH)-wildtype undergoing resection were prospectively included in a database (n = 138). EOR and residual tumor volume (RTV) were quantified with semiautomated software. Formalin-fixed paraffin-embedded tumor tissues were analyzed by targeted next-generation sequencing. The association between recurrent genomic alterations and EOR/RTV was evaluated using a recursive partitioning analysis to identify thresholds of EOR or RTV that may predict survival. The Kaplan-Meier methods and multivariable Cox proportional hazards regression methods were applied for survival analysis. RESULTS: Patients with EOR ≥88% experienced 44% prolonged overall survival (OS) in multivariable analysis (hazard ratio: 0.56, P = .030). Patients with alterations in the TP53 pathway and EOR <89% showed reduced OS compared to TP53 pathway altered patients with EOR>89% (10.5 vs 18.8 months; HR: 2.78, P = .013); however, EOR/RTV was not associated with OS in patients without alterations in the TP53 pathway. Meanwhile, in all patients with EOR <88%, PTEN-altered had significantly worse OS than PTEN-wildtype (9.5 vs 15.4 months; HR: 4.53, P < .001). CONCLUSION: Our results suggest that a subset of molecularly defined GBM IDH-wildtype may benefit more from aggressive resections. Re-resections to optimize EOR might be beneficial in a subset of molecularly defined GBMs. Molecular alterations should be taken into consideration for surgical treatment decisions in GBM IDH-wildtype.

3.
J Neurooncol ; 167(1): 99-109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351343

RESUMO

INTRODUCTION: Recent studies have identified that glioblastoma IDH-wildtype consists of different molecular subgroups with distinct prognoses. In order to accurately describe and classify gliomas, the Visually AcceSAble Rembrandt Images (VASARI) system was developed. The goal of this study was to evaluate the VASARI characteristics in molecular subgroups of IDH-wildtype glioblastoma. METHODS: A retrospective analysis of glioblastoma IDH- wildtype with comprehensive next-generation sequencing and pre-operative and post-operative MRI was performed. VASARI characteristics and 205 genes were evaluated. Multiple comparison adjustment by the Bejamin-Hochberg false discovery rate (BH-FDR) was performed. A 1:3 propensity score match (PSM) with a Caliper of 0.2 was done. RESULTS: 178 patients with GBM IDH-WT met the inclusion criteria. 4q12 amplified patients (n = 20) were associated with cyst presence (30% vs. 12%, p = 0.042), decreased hemorrhage (35% vs. 62%, p = 0.028), and non-restricting/mixed (35%/60%) rather than restricting diffusion pattern (5%), meanwhile, 4q12 non-amplified patients had mostly restricting (47.4%) rather than a non-restricting/mixed diffusion pattern (28.4%/23.4%). This remained statistically significant after BH-FDR adjustment (p = 0.002). PSM by 4q12 amplification showed that diffusion characteristics continued to be significantly different. Among RB1-mutant patients, 96% had well-defined enhancing margins vs. 70.6% of RB1-WT (p = 0.018), however, this was not significant after BH-FDR or PSM. CONCLUSIONS: Patients with glioblastoma IDH-wildtype harboring 4q12 amplification rarely have restricting DWI patterns compared to their wildtype counterparts, in which this DWI pattern is present in ~ 50% of patients. This suggests that some phenotypic imaging characteristics can be identified among molecular subtypes of IDH-wildtype glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/genética , Prognóstico , Isocitrato Desidrogenase/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Retinoblastoma/genética
4.
Nat Commun ; 15(1): 1373, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355560

RESUMO

SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.


Assuntos
Interleucina-6 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Acta Neuropathol Commun ; 12(1): 13, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243318

RESUMO

Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have altered cellular metabolism. For example, mutations in isocitrate dehydrogenase enzymes (e.g., IDH1 and IDH2) are common in diffuse gliomas and lead to increased levels of D-2-hydroxyglutarate in CSF. However, there is a poor understanding of changes CSF metabolites in GBM patients. In this study, we performed targeted metabolomic analysis of CSF from n = 31 patients with GBM and n = 13 individuals with non-neoplastic conditions (controls), by mass spectrometry. Hierarchical clustering and sparse partial least square-discriminant analysis (sPLS-DA) revealed differences in CSF metabolites between GBM and control CSF, including metabolites associated with fatty acid oxidation and the gut microbiome (i.e., carnitine, 2-methylbutyrylcarnitine, shikimate, aminobutanal, uridine, N-acetylputrescine, and farnesyl diphosphate). In addition, we identified differences in CSF metabolites in GBM patients based on the presence/absence of TP53 or PTEN mutations, consistent with the idea that different mutations have different effects on tumor metabolism. In summary, our results increase the understanding of CSF metabolites in patients with diffuse gliomas and highlight several metabolites that could be informative biomarkers in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Mutação/genética , Genômica , Biomarcadores Tumorais/genética , Isocitrato Desidrogenase/genética
7.
J Neurooncol ; 166(1): 39-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160230

RESUMO

PURPOSE: Genomic alterations are fundamental for molecular-guided therapy in patients with breast and lung cancer. However, the turn-around time of standard next-generation sequencing assays is a limiting factor in the timely delivery of genomic information for clinical decision-making. METHODS: In this study, we evaluated genomic alterations in 54 cerebrospinal fluid samples from 33 patients with metastatic lung cancer and metastatic breast cancer to the brain using the Oncomine Precision Assay on the Genexus sequencer. There were nine patients with samples collected at multiple time points. RESULTS: Cell-free total nucleic acids (cfTNA) were extracted from CSF (0.1-11.2 ng/µl). Median base coverage was 31,963× with cfDNA input ranging from 2 to 20 ng. Mutations were detected in 30/54 CSF samples. Nineteen (19/24) samples with no mutations detected had suboptimal DNA input (< 20 ng). The EGFR exon-19 deletion and PIK3CA mutations were detected in two patients with increasing mutant allele fraction over time, highlighting the potential of CSF-cfTNA analysis for monitoring patients. Moreover, the EGFR T790M mutation was detected in one patient with prior EGFR inhibitor treatment. Additionally, ESR1 D538G and ESR1::CCDC170 alterations, associated with endocrine therapy resistance, were detected in 2 mBC patients. The average TAT from cfTNA-to-results was < 24 h. CONCLUSION: In summary, our results indicate that CSF-cfTNA analysis with the Genexus-OPA can provide clinically relevant information in patients with brain metastases with short TAT.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Ácidos Nucleicos Livres/líquido cefalorraquidiano , Mutação , Receptores ErbB/genética , Inibidores de Proteínas Quinases
8.
Arch Pathol Lab Med ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37756559

RESUMO

CONTEXT.­: In the United States, review of digital whole slide images (WSIs) using specific systems is approved for primary diagnosis but has not been implemented for intraoperative consultation. OBJECTIVE.­: To evaluate the safety of review of WSIs and compare the efficiency of review of WSIs and glass slides (GSs) for intraoperative consultation. DESIGN.­: Ninety-one cases previously submitted for frozen section evaluation were randomly selected from 8 different anatomic pathology subspecialties. GSs from these cases were scanned on a Leica Aperio AT2 scanner at ×20 magnification (0.25 µm/pixel). The slides were deidentified, and a short relevant clinical history was provided for each slide. Nine board-certified general pathologists who do not routinely establish primary diagnoses using WSIs reviewed the WSIs using Leica Aperio ImageScope viewing software. After a washout period of 2-3 weeks, the pathologists reviewed the corresponding GSs using a light microscope (Olympus BX43). The pathologists recorded the diagnosis and time to reach the diagnosis. Intraobserver concordance, time to diagnosis, and specificity and sensitivity compared to the original diagnosis were evaluated. RESULTS.­: The rate of intraobserver concordance between GS results and WSI results was 93.7%. Mean time to diagnosis was 1.25 minutes for GSs and 1.76 minutes for WSIs (P < .001). Specificity was 91% for GSs and 90% for WSIs; sensitivity was 92% for GSs and 92% for WSIs. CONCLUSIONS.­: Time to diagnosis was longer with WSIs than with GSs, and scanning GSs and uploading the data to whole slide imaging systems takes time. However, review of WSIs appears to be a safe alternative to review of GSs. Use of WSIs allows reporting from a remote site during a public health emergency such as the COVID-19 pandemic and facilitates subspecialty histopathology services.

10.
Front Oncol ; 13: 1071792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077830

RESUMO

Isocitrate dehydrogenase (IDH) mutations are cornerstone diagnostic features in glioma classification. IDH mutations are typically characterized by mutually exclusive amino acid substitutions in the genes encoding for the IDH1 and the IDH2 enzyme isoforms. We report our institutional case of a diffuse astrocytoma with progression to secondary glioblastoma and concurrent IDH1/IDH2 mutations. A 49-year-old male underwent a subtotal resection of a lobular lesion within the right insula in 2013, revealing a WHO grade 3 anaplastic oligoastrocytoma, IDH1 mutated, 1p19q intact. Symptomatic tumor progression was suspected in 2018, leading to a surgical tumor biopsy that demonstrated WHO grade 4 IDH1 and IDH2 mutant diffuse astrocytoma. The patient subsequently underwent surgical resection followed by medical management and finally died in 2021. Although concurrent IDH1/IDH2 mutations have been rarely reported in the current literature, further study is required to better define their impact on patients' prognoses and their response to targeted therapies.

11.
Appl Immunohistochem Mol Morphol ; 31(5): 288-294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952585

RESUMO

Genomic alterations are critical for the diagnosis, prognostication, and treatment of patients with infiltrating gliomas. Telomerase reverse transcriptase promoter ( TERT p) mutations are among such crucial alterations. Although DNA sequencing is the preferred method for identifying TERT p mutations, it has limitations related to cost and accessibility. We tested telomerase reverse transcriptase (TERT) immunohistochemistry (IHC) as a surrogate for TERT p mutations in infiltrating gliomas. Thirty-one infiltrating gliomas were assessed by IHC using an anti-TERT Y182 antibody. IHC results were analyzed by a board-certified neuropathologist. Tumors were analyzed by targeted next-generation sequencing. A literature review of the use of TERT antibodies as a surrogate for TERT p mutations was performed. Eighteen gliomas harbored TERT p mutations. Overall, TERT IHC demonstrated a sensitivity of 61.1% and a specificity of 69.2% for identifying TERT p mutations. Among the 19 IDH1/IDH2 -wild-type gliomas, 16 (84%) harbored TERT p mutations, and TERT IHC had a sensitivity of 62.5% and a specificity of 33.3%. Among the 12 IDH1/IDH2 -mutant gliomas, 2 (17%) harbored TERT p mutations, and TERT IHC had a sensitivity of 50% and a specificity of 80%. TERT IHC had low positive and negative likelihood values in the identification of TERT p mutations. The literature review included 5 studies with 645 patients and 4 different TERT antibodies. The results consistently showed poor sensitivity and specificity of TERT IHC for identifying TERT p mutations. TERT IHC is a suboptimal surrogate marker for TERT p mutations in infiltrating gliomas. The need remains for cost-effective, efficient, and accessible alternatives to next-generation sequencing for the evaluation of TERT p mutations in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Telomerase , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Telomerase/genética , Imuno-Histoquímica , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Mutação , Biomarcadores Tumorais/genética , Isocitrato Desidrogenase/genética
13.
Cancer Biomark ; 36(2): 117-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530080

RESUMO

BACKGROUND: Fibroblast growth factor receptors (FGFRs) are frequently altered in cancers and present a potential therapeutic avenue. However, the type and prevalence of FGFR alterations in infiltrating gliomas (IGs) needs further investigation. OBJECTIVE: To understand the prevalence/type of FGFR alterations in IGs. METHODS: We reviewed clinicopathologic and genomic alterations of FGFR-mutant gliomas in a cohort of 387 patients. Tumors were examined by DNA next-generation sequencing for somatic mutations with a panel interrogating 205-genes. For comparison, cBioPortal databases were queried to identify FGFR-altered IGs. RESULTS: Fourteen patients (3.6%) with FGFR-mutant tumors were identified including 11 glioblastomas, Isocitrate dehydrogenase (IDH) - wildtype (GBM-IDH-WT), 2 oligodendrogliomas, and 1 astrocytoma IDH-mutant. FGFR-altered IGs showed endocrinoid capillaries, microvascular proliferation, necrosis, oligodendroglioma-like cells, fibrin thrombi, microcalcifications, and nodular growth. FGFR3 was the most commonly altered FGFR gene (64.3%). The most common additional mutations in FGFR-altered IGs were TERTp, CDKN2A/B, PTEN, CDK4, MDM2, and TP53. FGFR3 alterations were only observed in GBM-IDH-WT. EGFR alterations were rarely identified in FGFR3-altered gliomas. CONCLUSIONS: Histologic features correlate with FGFR alterations in IGs. FGFR3-TACC3 fusion and FGFR3 amplification are the most common FGFR alterations in IGs. FGFR alterations are a rare, but potentially viable, therapeutic target in asubset of IGs.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioma/genética , Glioma/patologia , Glioblastoma/genética , Mutação , Transdução de Sinais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Associadas aos Microtúbulos/genética
14.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201434

RESUMO

Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2-7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy.

16.
J Natl Compr Canc Netw ; 20(11): 1193-1202.e6, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351333

RESUMO

Recurrent and anaplastic pleomorphic xanthoastrocytoma (r&aPXA) is a rare primary brain tumor that is challenging to treat. Two-thirds of PXA tumors harbor a BRAF gene mutation. BRAF inhibitors have been shown to improve tumor control. However, resistance to BRAF inhibition develops in most cases. Concurrent therapy with MEK inhibitors may improve tumor control and patient survival. In this study, we identified 5 patients diagnosed with BRAF-mutated PXA who received BRAF and MEK inhibitors over a 10-year interval at our institution. Patient records were evaluated, including treatments, adverse effects (AEs), outcomes, pathology, next-generation sequencing, and MRI. The median age was 22 years (range, 14-66 years), 60% male, and 60% anaplastic PXA. Median overall survival was 72 months (range, 19-112 months); 1 patient died of tumor-related hemorrhage while off therapy, and the other 4 experienced long-term disease control (21, 72, 98, and 112 months, respectively). Dual BRAF/MEK inhibitors were well tolerated, with only grade 1-2 AEs, including rash, neutropenia, fatigue, abdominal discomfort, and diarrhea. No grade 3-5 AEs were detected. A literature review was also performed of patients diagnosed with BRAF-mutated PXA and treated with BRAF and/or MEK inhibitors through August 2021, with a total of 32 cases identified. The median age was 29 years (range, 8-57 years) and the median PFS and OS were 8.5 months (range, 2-35 months) and 35 months (range, 10-80 months), respectively. The most common AEs were grade 1-2 fatigue and skin rash. Results of this case series and literature review indicate that dual-drug therapy with BRAF and MEK inhibitors for r&aPXA with BRAF V600E mutation may delay tumor progression without unexpected AEs.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Neoplasias Encefálicas/patologia , Fadiga , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mutação , Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Pessoa de Meia-Idade , Idoso
17.
J Neurooncol ; 160(1): 221-231, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36203027

RESUMO

PURPOSE: Systemic chemotherapy including monotherapy with temozolomide (TMZ) or bevacizumab (BEV); two-drug combinations, such as irinotecan (IRI) and BEV, TMZ and BEV and a three-drug combination with TMZ, IRI and BEV (TIB) have been used in treating patients with progressive high-grade gliomas including glioblastoma (GBM). Most patients tolerated these regimens well with known side effects of hypertension, proteinuria, and reversible clinical myelosuppression (CM). However, organ- or system- specific toxicities from chemotherapy agents have never been examined by postmortem study. This is the largest cohort used to address this issue in glioma patients. METHODS: Postmortem tissues (from all major systems and organs) were prospectively collected and examined by standard institution autopsy and neuropathological procedures from 76 subjects, including gliomas (N = 68, 44/M, and 24/F) and brain metastases (N = 8, 5/M, and 3/F) between 2009 and 2019. Standard hematoxylin and eosin (H&E) were performed on all major organs including brain specimens. Electronic microscopic (EM) study was carried out on 14 selected subject's kidney samples per standard EM protocol. Medical records were reviewed with adverse events (AEs) analyzed and graded according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.03. A swimmer plot was utilized to visualize the timelines of patient history by treatment group. The binary logistic regression models were performed to explore any associations between treatment strategies and incident myelosuppression. RESULTS: Twenty-four glioma subjects were treated with TIB [median: 5.5 (range: 1-25) cycles] at tumor recurrence. Exposure to IRI significantly increased the frequency of CM (p = 0.05). No unexpected adverse events clinically, or permanent end-organ damage during postmortem examination was identified in glioma subjects who had received standard or prolonged duration of BEV, TMZ or TIB regimen-based chemotherapies except rare events of bone marrow suppression. The most common causes of death (COD) were tumor progression (63.2%, N = 43) followed by aspiration pneumonia (48.5%, N = 33) in glioma subjects. No COD was attributed to acute toxicity from TIB. The study also demonstrated that postmortem kidney specimen is unsuitable for studying renal ultrastructural pathological changes due to autolysis. CONCLUSION: There is no organ or system toxicity by postmortem examinations among glioma subjects who received BEV, TMZ or TIB regimen-based chemotherapies regardless of durations except for occasional bone marrow suppression and reversible myelosuppression clinically. IRI, but not the extended use of TMZ, significantly increased CM in recurrent glioma patients. COD most commonly resulted from glioma tumor progression with infiltration to brain stem and aspiration pneumonia.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Pneumonia Aspirativa , Humanos , Temozolomida/uso terapêutico , Glioblastoma/terapia , Bevacizumab/uso terapêutico , Irinotecano/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Encefálicas/terapia , Glioma/tratamento farmacológico
18.
J Neurooncol ; 159(2): 261-270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816267

RESUMO

INTRODUCTION: We aimed to evaluate IDH1 p.R132H mutation and 2-hydroxyglutarate (2HG) in cerebrospinal fluid (CSF) as biomarkers for patients with IDH-mutant gliomas. METHODS: CSF was collected from patients with infiltrating glioma, and 2HG levels were measured by liquid chromatography-mass spectrometry. IDH1 p.R132H mutant allele frequency (MAF) in CSF-ctDNA was measured by digital droplet PCR (ddPCR). Tumor volume was measured from standard-of-care magnetic resonance images. RESULTS: The study included 48 patients, 6 with IDH-mutant and 42 with IDH-wildtype gliomas, and 57 samples, 9 from the patients with IDH-mutant and 48 from the patients with IDH-wildtype gliomas. ctDNA was detected in 7 of the 9 samples from patients with IDH-mutant glioma, and IDH1 p.R132H mutation was detected in 5 of the 7 samples. The MAF ranged from 0.3 to 39.95%. Total 2HG level, D-2HG level, and D/L-2HG ratio in CSF were significantly higher in patients with IDH-mutant gliomas than in patients with IDH-wildtype gliomas. D-2HG level and D/L-2HG ratio correlated with total tumor volume in patients with IDH-mutant gliomas but not in patients with IDH-wildtype gliomas. CONCLUSION: Our results suggest that detection of IDH1 p.R132H mutation by ddPCR and increased D-2HG level in CSF may help identify IDH-mutant gliomas. Our results also suggest that D-2HG level and D/L-2HG ratio correlate with tumor volume in patients with IDH-mutant gliomas. Further prospective studies with larger cohorts are needed to validate these findings.


Assuntos
DNA Tumoral Circulante , Glioma , Isocitrato Desidrogenase , Biomarcadores , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/diagnóstico , DNA Tumoral Circulante/líquido cefalorraquidiano , Glioma/diagnóstico , Glutaratos , Humanos , Isocitrato Desidrogenase/líquido cefalorraquidiano , Isocitrato Desidrogenase/genética , Mutação , Estudos Prospectivos
19.
J Immunother Precis Oncol ; 5(1): 26-30, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35663835

RESUMO

Intrahepatic cholangiocarcinoma is a rare malignancy, which is rich in actionable alterations. Genomic aberrations in the mitogen-activated protein kinase (MAPK) pathway are common, and BRAF exon 15 p.V600E mutations are present in 5-7% of biliary tract cancers (BTC). Dual inhibition of BRAF and MEK has been established for BRAF-mutated melanoma and lung cancer, and recent basket trials have shown efficacy of this combination in BRAF V600E-mutant BTCs. Here, we report on a patient with BRAF exon 15 p.V600E mutant metastatic intrahepatic cholangiocarcinoma who was started on BRAF and MEK inhibition with vemurafenib and combimetinib. Shortly thereafter, he developed debilitating myositis, which was refractory to corticosteroids, requiring therapeutic plasma exchange and intravenous immunoglobulin. We also review BRAF as a target in BTCs, relevant clinical trials, and adverse events associated with BRAF and MEK inhibition.

20.
Neurooncol Adv ; 4(1): vdac054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591978

RESUMO

The gut-brain axis has presented a valuable new dynamic in the treatment of cancer and central nervous system (CNS) diseases. However, little is known about the potential role of this axis in neuro-oncology. The goal of this review is to highlight potential implications of the gut-brain axis in neuro-oncology, in particular gliomas, and future areas of research. The gut-brain axis is a well-established biochemical signaling axis that has been associated with various CNS diseases. In neuro-oncology, recent studies have described gut microbiome differences in tumor-bearing mice and glioma patients compared to controls. These differences in the composition of the microbiome are expected to impact the metabolic functionality of each microbiome. The effects of antibiotics on the microbiome may affect tumor growth and modulate the immune system in tumor-bearing mice. Preliminary studies have shown that the gut microbiome might influence PD-L1 response in glioma-bearing mice, as previously observed in other non-CNS cancers. Groundbreaking studies have identified intratumoral bacterial DNA in several cancers including high-grade glioma. The gut microbiome and its manipulation represent a new and relatively unexplored area that could be utilized to enhance the effectiveness of therapy in glioma. Further mechanistic studies of this therapeutic strategy are needed to assess its clinical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA