Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stem Cell Res Ther ; 13(1): 455, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064604

RESUMO

BACKGROUND: While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputations and life-threatening complications, DFUs often respond poorly to standard treatment. GMP-manufactured skin-derived ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory signals, and their wound healing-promoting efficacy in mouse wound models and human chronic venous ulcers. METHODS: The angiogenic potential of ABCB5+ MSCs was characterized with respect to angiogenic factor expression at the mRNA and protein level, in vitro endothelial trans-differentiation and tube formation potential, and perfusion-restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of ABCB5+ MSCs for topical adjunctive treatment of chronic, standard therapy-refractory, neuropathic plantar DFUs were assessed in an open-label single-arm clinical trial. RESULTS: Hypoxic incubation of ABCB5+ MSCs led to posttranslational stabilization of the hypoxia-inducible transcription factor 1α (HIF-1α) and upregulation of HIF-1α mRNA levels. HIF-1α pathway activation was accompanied by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. Upon culture in growth factor-supplemented medium, ABCB5+ MSCs expressed the endothelial-lineage marker CD31, and after seeding on gel matrix, ABCB5+ MSCs demonstrated formation of capillary-like structures comparable with human umbilical vein endothelial cells. Intramuscularly injected ABCB5+ MSCs to mice with surgically induced hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of ABCB5+ MSCs onto therapy-refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis set, n = 23), 64% (per-protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment-related adverse events were observed. CONCLUSIONS: The present observations identify GMP-manufactured ABCB5+ dermal MSCs as a potential, safe candidate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled trial to validate the clinical efficacy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https://clinicaltrials.gov/ct2/show/NCT03267784.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Pé Diabético , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Derme/citologia , Derme/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Pé Diabético/terapia , Humanos , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
2.
JID Innov ; 2(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34870260

RESUMO

A significant number of chronic venous ulcers (CVUs) fail to heal despite of guideline-conform standard of care. Skin-derived ABCB5+ mesenchymal stem cells (MSCs) can dampen the sustained IL-1ß-driven inflammation present in chronic wounds. Based on their wound healing-facilitating effects in a mouse CVU model and an autologous first-in-human study, ABCB5+ MSCs have emerged as a potential candidate for cell-based advanced therapy of non-healing CVUs. In the present interventional, multicenter, single-arm, phase I/IIa clinical trial, subjects whose CVU had emerged as standard therapy-resistant received one or two topical applications of 1×106 allogeneic ABCB5+ MSCs/cm2 wound area in addition to standard treatment. Out of 83 treatment-emergent adverse events, only three were judged related to the cell product; they were mild or moderate and recovered without sequelae. Wound size markedly decreased from baseline to week 12, resulting in a median wound size reduction of 76% (full analysis set, N=31), 78% (per-protocol set, N=27) and 87% (subset of responders; n=21). In conclusion, the study treatment was well tolerated and safe. The treatment elicited a profound wound size reduction within 12 weeks, identifying ABCB5+ MSCs as a potential candidate for adjunctive therapy of otherwise incurable CVUs. These results justify the conduct of a larger, randomized, controlled trial to confirm clinical efficacy.

3.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34665781

RESUMO

BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. ABCB5+ dermal mesenchymal stem cells (ABCB5+ MSCs) possess immunomodulatory, inflammation-dampening, and tissue-healing capacities. In a Col7a1-/- mouse model of RDEB, treatment with ABCB5+ MSCs markedly extended the animals' lifespans.METHODSIn this international, multicentric, single-arm, phase I/IIa clinical trial, 16 patients (aged 4-36 years) enrolled into 4 age cohorts received 3 i.v. infusions of 2 × 106 ABCB5+ MSCs/kg on days 0, 17, and 35. Patients were followed up for 12 weeks regarding efficacy and 12 months regarding safety.RESULTSAt 12 weeks, statistically significant median (IQR) reductions in the Epidermolysis Bullosa Disease Activity and Scarring Index activity (EBDASI activity) score of 13.0% (2.9%-30%; P = 0.049) and the Instrument for Scoring Clinical Outcome of Research for Epidermolysis Bullosa clinician (iscorEB­c) score of 18.2% (1.9%-39.8%; P = 0.037) were observed. Reductions in itch and pain numerical rating scale scores were greatest on day 35, amounting to 37.5% (0.0%-42.9%; P = 0.033) and 25.0% (-8.4% to 46.4%; P = 0.168), respectively. Three adverse events were considered related to the cell product: 1 mild lymphadenopathy and 2 hypersensitivity reactions. The latter 2 were serious but resolved without sequelae shortly after withdrawal of treatment.CONCLUSIONThis trial demonstrates good tolerability, manageable safety, and potential efficacy of i.v. ABCB5+ MSCs as a readily available disease-modifying therapy for RDEB and provides a rationale for further clinical evaluation.TRIAL REGISTRATIONClinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.FUNDINGThe trial was sponsored by RHEACELL GmbH & Co. KG. Contributions by NYF and MHF to this work were supported by the NIH/National Eye Institute (NEI) grants RO1EY025794 and R24EY028767.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Células-Tronco Mesenquimais/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Adulto Jovem
4.
Stem Cell Res Ther ; 12(1): 194, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741066

RESUMO

BACKGROUND: While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells, prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane-spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue. METHODS: We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product (ATMP). This product was tested in a preclinical study program investigating the cells' engraftment potential, biodistribution behavior, and safety. RESULTS: ABCB5+ LSCs were reliably expanded and manufactured as an ATMP that contains comparably high percentages of cells expressing transcription factors critical for LSC stemness maintenance (p63) and corneal epithelial differentiation (PAX6). Preclinical studies confirmed local engraftment potential of the cells and gave no signals of toxicity and tumorgenicity. These findings were sufficient for the product to be approved by the German Paul Ehrlich Institute and the U.S. Food & Drug Administration to be tested in an international multicenter phase I/IIa clinical trial (NCT03549299) to evaluate the safety and therapeutic efficacy in patients with LSCD. CONCLUSION: Building upon these data in conjunction with the previously shown cornea-restoring capacity of human ABCB5+ LSCs in animal models of LSCD, we provide an advanced allogeneic LSC-based treatment strategy that shows promise for replenishment of the patient's LSC pool, recreation of a functional barrier against invading conjunctival cells and restoration of a transparent, avascular cornea.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Doenças da Córnea/terapia , Epitélio Corneano/metabolismo , Humanos , Limbo da Córnea/metabolismo , Estudos Prospectivos , Células-Tronco/metabolismo , Distribuição Tecidual
5.
Cytotherapy ; 23(2): 165-175, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33011075

RESUMO

BACKGROUND AIM: Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. METHODS: The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. RESULTS: As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32-100%) at 12 weeks and early relief of pain. CONCLUSIONS: The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Células-Tronco Mesenquimais , Humanos , Imunomodulação , Indústria Manufatureira , Controle de Qualidade , Pele
6.
Stem Cell Res Ther ; 11(1): 482, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198791

RESUMO

BACKGROUND: Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes. METHODS: We have developed a validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium, and immunomagnetic isolation of the ABCB5+ cells from the mixed culture. RESULTS: Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches, and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product. CONCLUSION: We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure, and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Preparações Farmacêuticas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proliferação de Células , Meios de Cultura , Humanos
7.
Transfus Med Hemother ; 47(3): 236-242, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32595428

RESUMO

BACKGROUND: Transplantation of human corneal tissue is associated with the potential risk of transmittance of viral infections. In accordance with European directives and federal laws, in Germany each tissue donor has to be tested for infectious diseases such as hepatitis B and C virus (HBV and HCV) and human immunodeficiency virus (HIV) infection. However, most of the currently available CE-marked serologic and nucleic acid screening systems are only validated for antemortem blood. METHODS: Twenty related and paired ante- and postmortem blood samples from cornea donors were obtained and subsequently analyzed for hepatitis B surface antigen (HBsAg), hepatitis B antibody (anti-HBc), anti-HCV, HCV RNA, anti-HIV-1/2, and HIV p24 Ag using Abbott test systems. The sera were also spiked with reference materials in concentrations giving low and high positivity for HBV, HCV, and HIV markers. RESULTS: The spiked ante- and postmortem sera from related donors showed similar results for HBsAg, anti-HBc, anti-HCV, HCV RNA, anti-HIV, and HIV p24 Ag, indicating a high stability of viral markers in cadaveric specimens. Three cornea donors had a medical history of HBV infection and revealed anti-HBc at similar levels in the ante- and postmortem sera. In addition, there was a single postmortem sample demonstrating a weak signal of anti-HIV-1 and HIV-1 p24 Ag. False-positive or false-negative results were not detected. The results obtained with the Abbott ARCHITECT analyzer and Abbott RealTime HCV PCR showed no significant differences. CONCLUSION: The analyzed screening assays are suitable for the detection of infectious markers of HBV, HCV, and HIV at similar levels in spiked ante- and postmortem sera from cornea donors.

8.
BMC Ophthalmol ; 18(1): 316, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537942

RESUMO

BACKGROUND: Ingrowth of newly formed blood and lymph vessels (angiogenesis) from the limbus region into the cornea can be treated successfully by subconjunctival application of antiangiogenic agents. Currently, there are several angiogenesis inhibitors from various manufacturers available, such as vascular endothelial growth factor (VEGF) antibodies. The aim of the study was to investigate potential cytotoxic effects of two anti-VEGF agents, ranibizumab (Lucentis®) and bevacizumab (Avastin®) on the human corneal endothelium. METHODS: Human donor corneas, not suitable for corneal transplantation, were organ-cultured in the presence of either ranibizumab (Lucentis®) or bevacizumab (Avastin®) at different concentrations (group 1: 250 µg / ml, group 2: 25 µg / ml, group 3: 2.5 µg / ml) for a period of up to 4 weeks. Microscopic imaging for endothelial cell counting, detection of morphologic alterations of the endothelium, and molecular biology testing (Enzyme-linked Immunosorbent Assay [ELISA]) for metabolic changes was performed. RESULTS: Background-corrected results showed neither a significant lactate dehydrogenase (LDH) change with increasing culturing time nor a significant difference between ranibizumab (Lucentis®) and bevacizumab (Avastin®) treatment. The endothelial cell density revealed also no statistically significant difference between the two treatment groups with ranibizumab (Lucentis®) and bevacizumab (Avastin®) at all concentrations tested in this study. CONCLUSIONS: In this study, the anti-angiogenic agents ranibizumab (Lucentis®) and bevacizumab (Avastin®) demonstrated no cytotoxic effects on the corneal endothelium of human organ-cultured donor corneas over the limited study time period of 4 weeks. However, based on the study design (in-vitro) and the limited follow-up period, no conclusions on potential long-term effects can be drawn.


Assuntos
Inibidores da Angiogênese/toxicidade , Bevacizumab/toxicidade , Células Endoteliais/efeitos dos fármacos , Endotélio Corneano/efeitos dos fármacos , Ranibizumab/toxicidade , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Mol Cell Proteomics ; 13(12): 3446-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225355

RESUMO

Activin receptor type II (ACVR2) is a member of the transforming growth factor type II receptor family and controls cell growth and differentiation, thereby acting as a tumor suppressor. ACVR2 inactivation is known to drive colorectal tumorigenesis. We used an ACVR2-deficient microsatellite unstable colon cancer cell line (HCT116) to set up a novel experimental design for comprehensive analysis of proteomic changes associated with such functional loss of a tumor suppressor. To this end we combined two existing technologies. First, the ACVR2 gene was reconstituted in an ACVR2-deficient colorectal cancer (CRC) cell line by means of recombinase-mediated cassette exchange, resulting in the generation of an inducible expression system that allowed the regulation of ACVR2 gene expression in a doxycycline-dependent manner. Functional expression in the induced cells was explicitly proven. Second, we used the methionine analog azidohomoalanine for metabolic labeling of newly synthesized proteins in our cell line model. Labeled proteins were tagged with biotin via a Click-iT chemistry approach enabling specific extraction of labeled proteins by streptavidin-coated beads. Tryptic on-bead digestion of captured proteins and subsequent ultra-high-performance LC coupled to LTQ Orbitrap XL mass spectrometry identified 513 proteins, with 25 of them differentially expressed between ACVR2-deficient and -proficient cells. Among these, several candidates that had already been linked to colorectal cancer or were known to play a key role in cell growth or apoptosis control were identified, proving the utility of the presented experimental approach. In principle, this strategy can be adapted to analyze any gene of interest and its effect on the cellular de novo proteome.


Assuntos
Receptores de Activinas Tipo II/genética , Regulação Neoplásica da Expressão Gênica , Proteoma/genética , Coloração e Rotulagem/métodos , Receptores de Activinas Tipo II/deficiência , Alanina/análogos & derivados , Alanina/metabolismo , Alanina/farmacologia , Alcinos/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Azidas/química , Biotina/química , Química Click , Reação de Cicloadição , Doxiciclina/farmacologia , Perfilação da Expressão Gênica , Teste de Complementação Genética , Células HCT116 , Humanos , Anotação de Sequência Molecular , Proteoma/metabolismo , Recombinases/genética , Recombinases/metabolismo , Transdução de Sinais , Estreptavidina/química
10.
PLoS One ; 8(2): e57074, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468914

RESUMO

Aberrant glycosylation is a common feature of many malignancies including colorectal cancers (CRCs). About 15% of CRC show the microsatellite instability (MSI) phenotype that is associated with a high frequency of biallelic frameshift mutations in the A10 coding mononucleotide microsatellite of the transforming growth factor beta receptor 2 (TGFBR2) gene. If and how impaired TGFBR2 signaling in MSI CRC cells affects cell surface glycan pattern is largely unexplored. Here, we used the TGFBR2-deficient MSI colon carcinoma cell line HCT116 as a model system. Stable clones conferring doxycycline (dox)-inducible expression of a single copy wildtype TGFBR2 transgene were generated by recombinase-mediated cassette exchange (RMCE). In two independent clones, dox-inducible expression of wildtype TGFBR2 protein and reconstitution of its signaling function was shown. Metabolic labeling experiments using the tritiated sialic acid precursor N-acetyl-D-mannosamine (ManNAc) revealed a significant decline (∼30%) of its incorporation into newly synthesized sialoglycoproteins in a TGFBR2-dependent manner. In particular, we detected a significant decrease of sialylated ß1-integrin upon reconstituted TGFBR2 signaling which did not influence ß1-integrin protein turnover. Notably, TGFBR2 reconstitution did not affect the transcript levels of any of the known human sialyltransferases when examined by real-time RT- PCR analysis. These results suggest that reconstituted TGFBR2 signaling in an isogenic MSI cell line model system can modulate sialylation of cell surface proteins like ß1-integrin. Moreover, our model system will be suitable to uncover the underlying molecular mechanisms of altered MSI tumor glycobiology.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Instabilidade Genômica , Repetições de Microssatélites , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Sequência de Bases , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Marcação de Genes , Células HCT116 , Humanos , Integrina beta1/metabolismo , Polissacarídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética
11.
Neurochem Res ; 37(6): 1267-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22234579

RESUMO

Orchestrated upregulation of cell surface presentation of ganglioside GM1 and homodimeric galectin-1 is the molecular basis for growth regulation of human neuroblastoma (SK-N-MC) cells. Further study led to the discovery of competitive inhibition by galectin-3, prompting us to test tandem-repeat-type galectin-4 (two different lectin domains connected by a 42-amino-acid linker). This lectin bound to cells at comparably high affinity without involvement of the ganglioside, as disclosed by assays in the presence of cholera toxin B-subunit or galectin-1 and blocking glucosylceramide synthesis. Notably, when tested separately, binding of both lectin domains showed partial sensitivity to the bacterial agglutinin. Despite its ability for cross-linking surface association of galectin-4 did not affect proliferation, in contrast to homodimeric galectins. The truncation of linker length from 42 to 16 amino acids altered binding properties to let partial sensitivity to the bacterial lectin emerge. Cross-competition between parental and engineered proteins did not exceed 40%. No effect on cell growth was detected. This study reveals complete functional divergence between galectins differing in the spatial mode of lectin-site presentation and dependence of reactivity to distinct counter-receptor(s) on linker length. Due to the documented presence of galectin-4 in the nervous system and its affinity for sulfatide these in vitro results indicate the potential for a distinct functionality profile of this lectin in vivo, giving further research direction.


Assuntos
Gangliosídeo G(M1)/metabolismo , Galectina 4/metabolismo , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Gangliosídeo G(M1)/química , Galectina 1/química , Galectinas/metabolismo , Humanos , Ligantes , Relação Estrutura-Atividade
12.
J Biol Chem ; 284(46): 31532-40, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19755417

RESUMO

H(2)O(2) acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H(2)O(2)-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H(2)O(2)-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H(2)O(2), and the Orp1-roGFP2 redox relay effectively converts physiological H(2)O(2) signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H(2)O(2)-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins.


Assuntos
Glutationa Peroxidase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA