Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2702: 247-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679623

RESUMO

The most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved. In this review, we describe a fast high-throughput antibody (scFv) selection procedure in 96-well microtiter plates. The given detailed protocol allows the antibody selection ("panning"), screening, and identification of monoclonal antibodies in less than 2 weeks. Furthermore, we describe an on-rate panning approach for the selection of monoclonal antibodies with fast on-rates.


Assuntos
Anticorpos Monoclonais , Bacteriófagos , Humanos , Anticorpos Monoclonais/genética , Bioensaio , Técnicas de Visualização da Superfície Celular , Tecnologia
2.
Methods Mol Biol ; 2702: 411-417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679632

RESUMO

The antigen-binding ability of each antibody clone selected by phage display is usually initially ranked by a screening ELISA using monovalent scFv antibody fragments. Further characterization often requires bivalent antibody molecules such as IgG or scFv-Fc fusions. To produce these, the V region encoding genes of selected hits have to be cloned into a mammalian expression vector and analyzed as a bivalent molecule, requiring a laborious cloning procedure. We established a high-throughput procedure allowing rapid screening of candidates in bivalent formats. This protocol allows for the parallelized cloning of all selected antibody fragments into a mammalian expression vector in the 96-well plate format. The bivalent antibody molecules can then be produced and purified in 96-well plates for further analysis in microtiter plate assays.


Assuntos
Anticorpos , Fragmentos de Imunoglobulinas , Animais , Ensaio de Imunoadsorção Enzimática , Bioensaio , Técnicas de Visualização da Superfície Celular , Mamíferos
3.
Methods Mol Biol ; 2702: 543-561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679638

RESUMO

Phage display is an efficient and robust method for protein-protein interaction studies. Although it is mostly used for antibody generation, it can be also utilized for the discovery of immunogenic proteins that could be used as biomarkers. Through this technique, a genome or metagenome is fragmented and cloned into a phagemid vector. The resulting protein fragments from this genetic material are displayed on M13 phage surface, while the corresponding gene fragments are packaged. This packaging process uses the pIII deficient helperphage, called Hyperphage (M13KO7 ΔpIII), so open reading frames (ORFs) are enriched in these libraries, giving the name to this method: ORFeome phage display. After conducting a selection procedure, called "bio-panning," relevant immunogenic peptides or protein fragments are selected using purified antibodies or serum samples, and can be used as potential biomarkers. As ORFeome phage display is an in vitro method, only the DNA or cDNA of the species of interest is needed. Therefore, this approach is also suitable for organisms that are hard to cultivate, or metagenomic samples, for example. An additional advantage is that the biomarker discovery is not limited to surface proteins due to the presentation of virtually every kind of peptide or protein fragment encoded by the ORFeome on the phage surface. At last, the selected biomarkers can be the start for the development of diagnostic assays, vaccines, or protein interaction studies.


Assuntos
Pesquisa Biomédica , Anticorpos , Bacteriófago M13/genética , Bioensaio , Técnicas de Visualização da Superfície Celular
4.
Methods Mol Biol ; 2702: 563-585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679639

RESUMO

Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.


Assuntos
Bacteriófagos , Técnicas de Visualização da Superfície Celular , Epitopos , Mapeamento de Epitopos , Anticorpos Monoclonais , Bacteriófagos/genética
5.
Viruses ; 14(10)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298643

RESUMO

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.


Assuntos
Baculoviridae , COVID-19 , Humanos , Animais , Baculoviridae/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Angiotensina II , Insetos , Anticorpos Monoclonais
6.
Viruses ; 14(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746797

RESUMO

The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.


Assuntos
Bacteriófagos , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Bacteriófagos/metabolismo , Epitopos , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
7.
Emerg Microbes Infect ; 11(1): 1037-1048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35320064

RESUMO

The coronavirus SARS-CoV-2 is the causative agent for the disease COVID-19. To capture the IgA, IgG, and IgM antibody response of patients infected with SARS-CoV-2 at individual epitope resolution, we constructed planar microarrays of 648 overlapping peptides that cover the four major structural proteins S(pike), N(ucleocapsid), M(embrane), and E(nvelope). The arrays were incubated with sera of 67 SARS-CoV-2 positive and 22 negative control samples. Specific responses to SARS-CoV-2 were detectable, and nine peptides were associated with a more severe course of the disease. A random forest model disclosed that antibody binding to 21 peptides, mostly localized in the S protein, was associated with higher neutralization values in cellular anti-SARS-CoV-2 assays. For antibodies addressing the N-terminus of M, or peptides close to the fusion region of S, protective effects were proven by antibody depletion and neutralization assays. The study pinpoints unusual viral binding epitopes that might be suited as vaccine candidates.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Epitopos , Humanos , Aprendizado de Máquina , Peptídeos , Glicoproteína da Espícula de Coronavírus
8.
Front Cell Infect Microbiol ; 11: 697876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307196

RESUMO

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.


Assuntos
Bacteriófagos , COVID-19 , Doenças Transmissíveis , Animais , Anticorpos Monoclonais , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Humanos , Pandemias , SARS-CoV-2
9.
Cell Rep ; 36(4): 109433, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34273271

RESUMO

The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , Humanos , Mutação/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Nat Commun ; 12(1): 1577, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707427

RESUMO

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Afinidade de Anticorpos , COVID-19/epidemiologia , Linhagem Celular , Chlorocebus aethiops , Biblioteca Gênica , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/isolamento & purificação , Modelos Moleculares , Mutação , Testes de Neutralização , Pandemias , Biblioteca de Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA