Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39464005

RESUMO

We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo , light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.

2.
Protein Sci ; 33(5): e4993, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38647395

RESUMO

Optogenetic tools (OTs) operating in the far-red and near-infrared (NIR) region offer advantages for light-controlling biological processes in deep tissues and spectral multiplexing with fluorescent probes and OTs acting in the visible range. However, many NIR OTs suffer from background activation in darkness. Through shortening linkers, we engineered a novel NIR OT, iLight2, which exhibits a significantly reduced background activity in darkness, thereby increasing the light-to-dark activation contrast. The resultant optimal configuration of iLight2 components suggests a molecular mechanism of iLight2 action. Using a biliverdin reductase knock-out mouse model, we show that iLight2 exhibits advanced performance in mouse primary cells and deep tissues in vivo. Efficient light-controlled cell migration in wound healing cellular model demonstrates the possibility of using iLight2 in therapy and, overall, positions it as a valuable addition to the NIR OT toolkit for gene transcription applications.


Assuntos
Optogenética , Animais , Optogenética/métodos , Camundongos , Transcrição Gênica , Camundongos Knockout , Humanos , Raios Infravermelhos
3.
Protein Sci ; 32(8): e4709, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347539

RESUMO

We recently converted the GAF domain of NpR3784 cyanobacteriochrome into near-infrared (NIR) fluorescent proteins (FPs). Unlike cyanobacterichrome, which incorporates phycocyanobilin tetrapyrrole, engineered NIR FPs bind biliverdin abundant in mammalian cells, thus being the smallest scaffold for it. Here, we determined the crystal structure of the brightest blue-shifted protein of the series, miRFP670nano3, at 1.8 Å resolution, characterized its chromophore environment and explained the molecular basis of its spectral properties. Using the determined structure, we have rationally designed a red-shifted NIR FP, termed miRFP704nano, with excitation at 680 nm and emission at 704 nm. miRFP704nano exhibits a small size of 17 kDa, enhanced molecular brightness, photostability and pH-stability. miRFP704nano performs well in various protein fusions in live mammalian cells and should become a versatile genetically-encoded NIR probe for multiplexed imaging across spatial scales in different modalities.


Assuntos
Proteínas de Bactérias , Fitocromo , Animais , Proteínas Luminescentes/química , Proteínas de Bactérias/química , Biliverdina/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Mamíferos
5.
Nat Methods ; 20(1): 70-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456785

RESUMO

Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano. miRFP718nano efficiently binds endogenous biliverdin chromophore and brightly fluoresces in mammalian cells and tissues. miRFP718nano has maximal emission at 718 nm and an emission tail in the short-wave infrared (SWIR) region, allowing deep-penetrating off-peak fluorescence imaging in vivo. The miRFP718nano structure reveals the molecular basis of its red shift. We demonstrate superiority of miRFP718nano-enabled SWIR imaging over NIR-I imaging of microbes in the mouse digestive tract, mammalian cells injected into the mouse mammary gland and NF-kB activity in a mouse model of liver inflammation.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Camundongos , Animais , Corantes Fluorescentes/química , Mamíferos
6.
Front Cell Dev Biol ; 10: 931237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927988

RESUMO

Nuclear transport in neurons differs from that in non-neuronal cells. Here we developed a non-opsin optogenetic tool (OT) for the nuclear export of a protein of interest induced by near-infrared (NIR) light. In darkness, nuclear import reverses the OT action. We used this tool for comparative analysis of nuclear transport dynamics mediated by nuclear localization signals (NLSs) with different importin specificities. We found that widely used KPNA2-binding NLSs, such as Myc and SV40, are suboptimal in neurons. We identified uncommon NLSs mediating fast nuclear import and demonstrated that the performance of the OT for nuclear export can be adjusted by varying NLSs. Using these NLSs, we optimized the NIR OT for light-controlled gene expression for lower background and higher contrast in neurons. The selected NLSs binding importins abundant in neurons could improve performance of genetically encoded tools in these cells, including OTs and gene-editing tools.

7.
Nat Methods ; 19(6): 740-750, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606446

RESUMO

Small near-infrared (NIR) fluorescent proteins (FPs) are much needed as protein tags for imaging applications. We developed a 17 kDa NIR FP, called miRFP670nano3, which brightly fluoresces in mammalian cells and enables deep-brain imaging. By exploring miRFP670nano3 as an internal tag, we engineered 32 kDa NIR fluorescent nanobodies, termed NIR-Fbs, whose stability and fluorescence strongly depend on the presence of specific intracellular antigens. NIR-Fbs allowed background-free visualization of endogenous proteins, detection of viral antigens, labeling of cells expressing target molecules and identification of double-positive cell populations with bispecific NIR-Fbs against two antigens. Applying NIR-Fbs as destabilizing fusion partners, we developed molecular tools for directed degradation of targeted proteins, controllable protein expression and modulation of enzymatic activities. Altogether, NIR-Fbs enable the detection and manipulation of a variety of cellular processes based on the intracellular protein profile.


Assuntos
Anticorpos de Domínio Único , Animais , Corantes Fluorescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mamíferos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
8.
Commun Chem ; 42021.
Artigo em Inglês | MEDLINE | ID: mdl-34746444

RESUMO

Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.

9.
Nat Commun ; 12(1): 3859, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162879

RESUMO

Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing.


Assuntos
Gammaproteobacteria/genética , Regulação da Expressão Gênica , Neurônios/metabolismo , Optogenética/métodos , Transcrição Gênica/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Feminino , Gammaproteobacteria/metabolismo , Células HeLa , Humanos , Raios Infravermelhos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Neurônios/citologia , Espectroscopia de Luz Próxima ao Infravermelho
10.
Commun Chem ; 4(1): 3, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697514

RESUMO

Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.

11.
Nat Commun ; 11(1): 239, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932632

RESUMO

Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve ~40 nm resolution in live cells. In living mice we detect ~105 fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670 nm to 720 nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Imagem Molecular/instrumentação , Animais , Linhagem Celular , Feminino , Fluorescência , Humanos , Microscopia Intravital , Camundongos , Imagem Molecular/métodos , Engenharia de Proteínas , Estabilidade Proteica , Espectroscopia de Luz Próxima ao Infravermelho
12.
Nat Commun ; 9(1): 2734, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013153

RESUMO

Photoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast. We have imaged both DrBphP-PCM and RpBphP1 simultaneously on the basis of their unique signal decay characteristics, using a reversibly switchable single-impulse panoramic PACT (RS-SIP-PACT) with a single wavelength excitation. The simple structural organization of DrBphP-PCM allows engineering a bimolecular PA complementation reporter, a split version of DrBphP-PCM, termed DrSplit. DrSplit enables PA detection of protein-protein interactions in deep-seated mouse tumors and livers, achieving 125-µm spatial resolution and 530-cell sensitivity in vivo. The combination of RS-SIP-PACT with DrBphP-PCM and DrSplit holds great potential for noninvasive multi-contrast deep-tissue functional imaging.


Assuntos
Proteínas de Bactérias/genética , Neoplasias Encefálicas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagem Molecular/métodos , Técnicas Fotoacústicas/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia/métodos , Animais , Proteínas de Bactérias/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Xenoenxertos , Humanos , Fígado/metabolismo , Camundongos , Camundongos Nus , Imagem Molecular/instrumentação , Técnicas Fotoacústicas/instrumentação , Plasmídeos/química , Plasmídeos/metabolismo , Engenharia de Proteínas , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Tomografia/instrumentação
13.
Chem Sci ; 8(6): 4546-4557, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936332

RESUMO

Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.

14.
Sci Rep ; 6: 37362, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857208

RESUMO

Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Luminescentes/metabolismo , Fitocromo/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Biliverdina/química , Sítios de Ligação/genética , Fluorescência , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mutação , Fitocromo/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho
15.
Nat Commun ; 7: 12405, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27539380

RESUMO

Monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags and components of biosensors for deep-tissue imaging and multicolour microscopy. We report three bright and spectrally distinct monomeric NIR FPs, termed miRFPs, engineered from bacterial phytochrome, which can be used as easily as GFP-like FPs. miRFPs are 2-5-fold brighter in mammalian cells than other monomeric NIR FPs and perform well in protein fusions, allowing multicolour structured illumination microscopy. miRFPs enable development of several types of NIR biosensors, such as for protein-protein interactions, RNA detection, signalling cascades and cell fate. We demonstrate this by engineering the monomeric fluorescence complementation reporters, the IκBα reporter for NF-κB pathway and the cell cycle biosensor for detection of proliferation status of cells in culture and in animals. miRFPs allow non-invasive visualization and detection of biological processes at different scales, from super-resolution microscopy to in vivo imaging, using the same probes.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Microscopia Intravital/métodos , Proteínas Luminescentes/genética , Animais , Bactérias/genética , Proteínas de Bactérias/química , Linhagem Celular , Feminino , Hepatócitos , Humanos , Raios Infravermelhos , Proteínas Luminescentes/química , Camundongos , Camundongos SCID , Mutagênese , Fitocromo/química , Fitocromo/genética , Engenharia de Proteínas , Espectroscopia de Luz Próxima ao Infravermelho/métodos
16.
Sci Rep ; 6: 18750, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725513

RESUMO

Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.


Assuntos
Proteínas de Bactérias/química , Biliverdina/química , Proteínas Luminescentes/química , Fitocromo/química , Regulação Alostérica , Substituição de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Células HeLa , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Fitocromo/biossíntese , Fitocromo/genética , Ligação Proteica , Estabilidade Proteica
17.
Chem Biol ; 22(11): 1540-1551, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590639

RESUMO

Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are the probes of choice for deep-tissue imaging. Detection of several processes requires spectrally distinct NIR FPs. We developed an NIR FP, BphP1-FP, which has the most blue-shifted spectra and the highest fluorescence quantum yield among BphP-derived FPs. We found that these properties result from the binding of the biliverdin chromophore to a cysteine residue in the GAF domain, unlike natural BphPs and other BphP-based FPs. To elucidate the molecular basis of the spectral shift, we applied biochemical, structural and mass spectrometry analyses and revealed the formation of unique chromophore species. Mutagenesis of NIR FPs of different origins indicated that the mechanism of the spectral shift is general and can be used to design multicolor NIR FPs from other BphPs. We applied pairs of spectrally distinct point cysteine mutants to multicolor cell labeling and demonstrated that they perform well in model deep-tissue imaging.


Assuntos
Proteínas de Bactérias/química , Proteínas Luminescentes/química , Sequência de Aminoácidos , Animais , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/química , Cisteína/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese , Fitocromo/química , Fitocromo/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rodopseudomonas/metabolismo , Alinhamento de Sequência , Espectroscopia de Luz Próxima ao Infravermelho
18.
Nat Commun ; 6: 7670, 2015 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158227

RESUMO

To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in the underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP-fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into the use of red FPs in the secretory pathway. Our monomeric 'oxFPs' finally resolve long-standing, underappreciated and important problems of cell biology and should be useful for a number of applications.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Cães , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/química , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Imagem Óptica/métodos , Coloração e Rotulagem , Proteína Vermelha Fluorescente
19.
Curr Opin Chem Biol ; 27: 52-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26115447

RESUMO

Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies.


Assuntos
Proteínas de Bactérias/genética , Diagnóstico por Imagem/métodos , Proteínas Luminescentes/genética , Fitocromo/genética , Engenharia de Proteínas , Animais , Proteínas de Bactérias/química , Proteínas Luminescentes/química , Fitocromo/química , Espectroscopia de Luz Próxima ao Infravermelho , Imagem Corporal Total
20.
New Phytol ; 198(4): 1049-1059, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528034

RESUMO

· The dimension of organs depends on the number and the size of their component cells. Formation of polyploid cells by endoreduplication cycles is predominantly associated with increases in the cell size and implicated in organ growth. In plants, the CCS52A proteins play a major role in the switch from mitotic to endoreduplication cycles controlling thus the number of mitotic cells and the endoreduplication events in the differentiating cells. · Arabidopsis has two CCS52A isoforms; AtCCS52A1 and AtCCS52A2. Here we focused on their roles in endoreduplication and cell size control during plant development. We demonstrate their complementary and dose-dependent actions that are dependent on their expression patterns. Moreover, the impact of CCS52A overexpression on organ size in transgenic plants was dependent on the expression level; while enhanced expression of the CCS52A genes positively correlated with the ploidy levels, organ sizes were negatively affected by strong overexpression whereas milder overexpression resulted in a significant increase in the organ sizes. · Taken together, these finding support both complementary and dose-dependent actions for the Arabidopsis CCS52A isoforms in plant development and demonstrate that elevated ectopic CCS52A expression positively correlates with organ size, opening a route to higher biomass production.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Endorreduplicação/genética , Dosagem de Genes/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Tamanho Celular , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutação/genética , Fenótipo , Desenvolvimento Vegetal/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Ploidias , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA