Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134447, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692000

RESUMO

Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.


Assuntos
Biofilmes , Cromo , Desnitrificação , Enxofre , Cromo/toxicidade , Cromo/metabolismo , Cromo/química , Desnitrificação/efeitos dos fármacos , Enxofre/química , Enxofre/metabolismo , Biofilmes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Nitrito Redutases/metabolismo , Nitrato Redutase/metabolismo , Águas Residuárias/química , Espécies Reativas de Oxigênio/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Elétrons , Estresse Oxidativo/efeitos dos fármacos
2.
Bioresour Technol ; 400: 130699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615966

RESUMO

Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.


Assuntos
Cromo , Desnitrificação , Enxofre , Cromo/metabolismo , Enxofre/farmacologia , Enxofre/química , Transporte de Elétrons , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Thiobacillus/metabolismo , Antraquinonas/farmacologia , Cisteína/farmacologia , Cisteína/metabolismo
3.
Water Res ; 252: 121230, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330714

RESUMO

Although the biotoxicity of heavy metals has been widely studied, there are few reports on the recovery strategy of the inhibited bio-system. This study proposed a combined promoter-I (Primary promoter: l-cysteine, biotin, and cytokinin + Electron-shuttle: PMo12) to recover the denitrification suppressed by Cr(VI). Compared with self-recovery, combined promoter-I shortened the recovery time of 28 cycles, and the recovered reactor possessed more stable long-term operation performance with >95 % nitrogen removal. The biomass increased by 7.07 mg VSS/(cm3 carrier) than self-recovery due to the promoted bacterial reproduction, thereby reducing the toxicity load of chromium per unit biomass. The combined promoter-I strengthened the toxicity remediation by promoting 92.84 % of the intracellular chromium release and rapidly activating anti-oxidative stress response. During toxicity remediation, ROS content quickly decreased, and the PN/PS value was 2.27 times that of self-recovery. PMo12 relieved Cr(VI) inhibition on NO3--N reduction by increasing NAR activity. The enhanced intracellular and intercellular electron transmission benefited from the stimulated NADH, FMN, and Cyt.c secretion by the primary promoter and the improved transmembrane electron transmission by Mo. PMo12 and the primary promoter synergized in regulating community structure and improving microbial richness. This study provided practical approaches for microbial toxicity remediation and maintaining high-efficiency denitrification.


Assuntos
Desnitrificação , Metais Pesados , Elétrons , Cromo/toxicidade , Cromo/química
4.
J Environ Manage ; 343: 118230, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247550

RESUMO

Electrospinning micro-nanofibers with exceptional physicochemical properties and biocompatibility are becoming popular in the medical field. These features indicate its potential application as microbial immobilized carriers in wastewater treatment. Here, aerobic denitrifying bacteria were immobilized on micro-nanofibers, which were prepared using different concentrations of polyacrylonitrile (PAN) solution (8%, 12% and 15%). The results of diameter distribution, specific surface area and average pore diameter indicated that 15% PAN micro-nanofibers with tighter surface structure were not suitable as microbial carriers. The bacterial load results showed that the cell density (OD600) and total protein of 12% PAN micro-nanofibers were 107.14% and 106.28% higher than those of 8% PAN micro-nanofibers. Subsequently, the 12% PAN micro-nanofibers were selected for aerobic denitrification under the different C/N ratios (1.5-10), and stable performance was obtained. Bacterial community analysis further manifested that the micro-nanofibers effectively immobilized bacteria and enriched bacterial structure under the high C/N ratios. Therefore, the feasibility of micro-nanofibers as microbial carriers was confirmed. This work was of great significance for promoting the application of electrospinning for microbial immobilization in wastewater treatment.


Assuntos
Nanofibras , Águas Residuárias , Desnitrificação , Nanofibras/química , Nitrogênio , Bactérias , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA