Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Ultrasound Med Biol ; 49(11): 2327-2335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37550173

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a significant cause of diffuse liver disease, morbidity and mortality worldwide. Early and accurate diagnosis of NALFD is critical to identify patients at risk of disease progression. Liver biopsy is the current gold standard for diagnosis and prognosis. However, a non-invasive diagnostic tool is desired because of the high cost and risk of complications of tissue sampling. Medical ultrasound is a safe, inexpensive and widely available imaging tool for diagnosing NAFLD. Emerging sonographic tools to quantitatively estimate hepatic fat fraction, such as tissue sound speed estimation, are likely to improve diagnostic accuracy, precision and reproducibility compared with existing qualitative and semi-quantitative techniques. Various pulse-echo ultrasound speed of sound estimation methodologies have been investigated, and some have been recently commercialized. We review state-of-the-art in vivo speed of sound estimation techniques, including their advantages, limitations, technical sources of variability, biological confounders and existing commercial implementations. We report the expected range of hepatic speed of sound as a function of liver steatosis and fibrosis that may be encountered in clinical practice. Ongoing efforts seek to quantify sound speed measurement accuracy and precision to inform threshold development around meaningful differences in fat fraction and between sequential measurements.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Reprodutibilidade dos Testes , Ultrassom , Fígado/diagnóstico por imagem , Fígado/patologia , Ultrassonografia/métodos , Imageamento por Ressonância Magnética
2.
Ultrasound Med Biol ; 49(7): 1499-1509, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149429

RESUMO

Achilles tendinopathy is the most prevalent lower limb tendinopathy, yet it remains poorly understood, with mismatches between observed structure and reported function. Recent studies have hypothesised that Achilles tendon (AT) healthy function is associated with variable deformation across the tendon width during use, focusing on quantifying sub-tendon deformation. Here, the aim of this work was to synthesise recent advances exploring human free AT tissue-level deformation during use. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, PubMed, Embase, Scopus and Web of Science were systematically searched. Study quality and risk of bias were assessed. Thirteen articles were retained, yielding data on free AT deformation patterns. Seven were categorised as high-quality and six as medium-quality studies. Evidence consistently reports that healthy and young tendons deform non-uniformly, with the deeper layer displacing 18%-80% more than the superficial layer. Non-uniformity decreased by 12%-85% with increasing age and by 42%-91% in the presence of injury. There is limited evidence of large effect that AT deformation patterns during dynamic loading are non-uniform and may act as a biomarker of tendon health, risk of injury and rehabilitation impact. Better considered participant recruitment and improved measurement procedures would particularly improve study quality, to explore links between tendon structure, function, aging and disease in distinct populations.


Assuntos
Tendão do Calcâneo , Doenças Musculoesqueléticas , Tendinopatia , Humanos , Tendão do Calcâneo/lesões , Tendinopatia/diagnóstico por imagem , Ultrassonografia , Músculos
3.
Mol Oncol ; 17(6): 1076-1092, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081807

RESUMO

Hyaluronan (HA) is a key component of the dense extracellular matrix in breast cancer, and its accumulation is associated with poor prognosis and metastasis. Pegvorhyaluronidase alfa (PEGPH20) enzymatically degrades HA and can enhance drug delivery and treatment response in preclinical tumour models. Clinical development of stromal-targeted therapies would be accelerated by imaging biomarkers that inform on therapeutic efficacy in vivo. Here, PEGPH20 response was assessed by multiparametric magnetic resonance imaging (MRI) in three orthotopic breast tumour models. Treatment of 4T1/HAS3 tumours, the model with the highest HA accumulation, reduced T1 and T2 relaxation times and the apparent diffusion coefficient (ADC), and increased the magnetisation transfer ratio, consistent with lower tissue water content and collapse of the extracellular space. The transverse relaxation rate R2 * increased, consistent with greater erythrocyte accessibility following vascular decompression. Treatment of MDA-MB-231 LM2-4 tumours reduced ADC and dramatically increased tumour viscoelasticity measured by MR elastography. Correlation matrix analyses of data from all models identified ADC as having the strongest correlation with HA accumulation, suggesting that ADC is the most sensitive imaging biomarker of tumour response to PEGPH20.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Feminino , Ácido Hialurônico/metabolismo , Microambiente Tumoral , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37067961

RESUMO

Dynamic contrast-enhanced ultrasound imaging (DCE-US) may be used to characterize tumor vascular perfusion using metrics derived from time-amplitude curves (TACs). The 3-D DCE-US enables generation of 3-D parametric maps of TAC metrics that may inform on how perfusion varies across the entire tumor. The aim of this work was to understand the effect of low temporal sampling (i.e., < 1 Hz) typical of 3-D imaging using a swept 1-D array transducer on the evaluation of TAC metrics and the effect of transducer motion in combination with flow on 3-D parametric maps generated using both plane wave imaging (PWI) (seven angles) and focused imaging (FI). Correlation maps were introduced to evaluate the spatial blurring of TAC metrics. A research ultrasound scanner and a pulse-inversion algorithm were used to obtain DCE-US. The 2-D (frame rate 10 Hz) and 3-D (volume rate 0.4 Hz) images were acquired of a simple wall-less vessel phantom (flow phantom) and a cartridge phantom. Volumetric imaging provided similar TACs to that of the higher 2-D sampling rate. Varying sweep speed and acceleration/deceleration had little influence on the 3-D TAC compared to 2-D for both FI and PWI. Sweeping motion and limited temporal sampling (0.4 Hz) did not change the spatial correlation of TAC metrics measured using FI, whereas a small increase in correlation across the cartridge phantom was observed for PWI. This was attributed to grating lobe artifacts, broad beam spatial blurring, and incoherent compounding caused by motion. Increased correlation will reduce the spatial resolution with which inhomogeneity of vascular perfusion can be mapped supporting the choice of FI for DCE-US.


Assuntos
Algoritmos , Meios de Contraste , Ultrassonografia/métodos , Imagens de Fantasmas , Movimento (Física) , Imageamento Tridimensional/métodos
5.
Cancers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36230755

RESUMO

Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.

6.
Radiology ; 305(3): 526-537, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36255312

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is believed to affect one-third of American adults. Noninvasive methods that enable detection and monitoring of NAFLD have the potential for great public health benefits. Because of its low cost, portability, and noninvasiveness, US is an attractive alternative to both biopsy and MRI in the assessment of liver steatosis. NAFLD is qualitatively associated with enhanced B-mode US echogenicity, but visual measures of B-mode echogenicity are negatively affected by interobserver variability. Alternatively, quantitative backscatter parameters, including the hepatorenal index and backscatter coefficient, are being investigated with the goal of improving US-based characterization of NAFLD. The American Institute of Ultrasound in Medicine and Radiological Society of North America Quantitative Imaging Biomarkers Alliance are working to standardize US acquisition protocols and data analysis methods to improve the diagnostic performance of the backscatter coefficient in liver fat assessment. This review article explains the science and clinical evidence underlying backscatter for liver fat assessment. Recommendations for data collection are discussed, with the aim of minimizing potential confounding effects associated with technical and biologic variables.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos , Fígado/diagnóstico por imagem , Fígado/patologia , Ultrassonografia/métodos , Imageamento por Ressonância Magnética
7.
Front Oncol ; 11: 619286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732645

RESUMO

BACKGROUND: The clinical outcomes for brain tumor resection have been shown to be significantly improved with increased extent of resection. To achieve this, neurosurgeons employ different intra-operative tools to improve the extent of resection of brain tumors, including ultrasound, CT, and MRI. Young's modulus (YM) of brain tumors have been shown to be different from normal brain but the accuracy of SWE in assisting brain tumor resection has not been reported. AIMS: To determine the accuracy of SWE in detecting brain tumor residual using post-operative MRI scan as "gold standard". METHODS: Thirty-four patients (aged 1-62 years, M:F = 15:20) with brain tumors were recruited into the study. The intraoperative SWE scans were performed using Aixplorer® (SuperSonic Imagine, France) using a sector transducer (SE12-3) and a linear transducer (SL15-4) with a bandwidth of 3 to 12 MHz and 4 to 15 MHz, respectively, using the SWE mode. The scans were performed prior, during and after brain tumor resection. The presence of residual tumor was determined by the surgeon, ultrasound (US) B-mode and SWE. This was compared with the presence of residual tumor on post-operative MRI scan. RESULTS: The YM of the brain tumors correlated significantly with surgeons' findings (ρ = 0.845, p < 0.001). The sensitivities of residual tumor detection by the surgeon, US B-mode and SWE were 36%, 73%, and 94%, respectively, while their specificities were 100%, 63%, and 77%, respectively. There was no significant difference between detection of residual tumor by SWE, US B-mode, and MRI. SWE and MRI were significantly better than the surgeon's detection of residual tumor (p = 0.001 and p < 0.001, respectively). CONCLUSIONS: SWE had a higher sensitivity in detecting residual tumor than the surgeons (94% vs. 36%). However, the surgeons had a higher specificity than SWE (100% vs. 77%). Therefore, using SWE in combination with surgeon's opinion may optimize the detection of residual tumor, and hence improve the extent of brain tumor resection.

8.
Cancers (Basel) ; 13(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558449

RESUMO

BACKGROUND: ultrasound-based shear wave elastography (SWE) can non-invasively assess prostate tissue stiffness. This systematic review aims to evaluate SWE for the detection of prostate cancer (PCa) and compare diagnostic estimates between studies reporting the detection of all PCa and clinically significant PCa (csPCa). METHODS: a literature search was performed using the MEDLINE, EMBASE, Cochrane Library, ClinicalTrials.gov, and CINAHL databases. Studies evaluating SWE for the detection of PCa using histopathology as reference standard were included. RESULTS: 16 studies including 2277 patients were included for review. Nine studies evaluated SWE for the detection of PCa using systematic biopsy as a reference standard at the per-sample level, with a pooled sensitivity and specificity of 0.85 (95% CI = 0.74-0.92) and 0.85 (95% CI = 0.75-0.91), respectively. Five studies evaluated SWE for the detection of PCa using histopathology of radical prostatectomy (RP) specimens as the reference standard, with a pooled sensitivity and specificity of 0.71 (95% CI = 0.55-0.83) and 0.74 (95% CI = 0.42-0.92), respectively. Sub-group analysis revealed a higher pooled sensitivity (0.77 vs. 0.62) and specificity (0.84 vs. 0.53) for detection of csPCa compared to all PCa among studies using RP specimens as the reference standard. CONCLUSION: SWE is an attractive imaging modality for the detection of PCa.

9.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120903

RESUMO

Most modern energy resolving, photon counting detectors employ small (sub 1 mm) pixels for high spatial resolution and low per pixel count rate requirements. These small pixels can suffer from a range of charge sharing effects (CSEs) that degrade both spectral analysis and imaging metrics. A range of charge sharing correction algorithms (CSCAs) have been proposed and validated by different groups to reduce CSEs, however their performance is often compared solely to the same system when no such corrections are made. In this paper, a combination of Monte Carlo and finite element methods are used to compare six different CSCAs with the case where no CSCA is employed, with respect to four different metrics: absolute detection efficiency, photopeak detection efficiency, relative coincidence counts, and binned spectral efficiency. The performance of the various CSCAs is explored when running on systems with pixel pitches ranging from 100 µm to 600µm, in 50 µm increments, and fluxes from 106 to 108 photons mm-2 s-1 are considered. Novel mechanistic explanations for the difference in performance of the various CSCAs are proposed and supported. This work represents a subset of a larger project in which pixel pitch, thickness, flux, and CSCA are all varied systematically.

10.
Radiother Oncol ; 149: 134-141, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387546

RESUMO

BACKGROUND AND PURPOSE: Daily image guidance is standard care for prostate radiotherapy. Innovations which improve the accuracy and efficiency of ultrasound guidance are needed, particularly with respect to reducing interobserver variation. This study explores automation tools for this purpose, demonstrated on the Elekta Clarity Autoscan®. The study was conducted as part of the Clarity-Pro trial (NCT02388308). MATERIALS AND METHODS: Ultrasound scan volumes were collected from 32 patients. Prostate matches were performed using two proposed workflows and the results compared with Clarity's proprietary software. Gold standard matches derived from manually localised landmarks provided a reference. The two workflows incorporated a custom 3D image registration algorithm, which was benchmarked against a third-party application (Elastix). RESULTS: Significant reductions in match errors were reported from both workflows compared to standard protocol. Median (IQR) absolute errors in the left-right, anteroposterior and craniocaudal axes were lowest for the Manually Initiated workflow: 0.7(1.0) mm, 0.7(0.9) mm, 0.6(0.9) mm compared to 1.0(1.7) mm, 0.9(1.4) mm, 0.9(1.2) mm for Clarity. Median interobserver variation was ≪0.01 mm in all axes for both workflows compared to 2.2 mm, 1.7 mm, 1.5 mm for Clarity in left-right, anteroposterior and craniocaudal axes. Mean matching times was also reduced to 43 s from 152 s for Clarity. Inexperienced users of the proposed workflows attained better match precision than experienced users on Clarity. CONCLUSION: Automated image registration with effective input and verification steps should increase the efficacy of interfraction ultrasound guidance compared to the current commercially available tools.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Automação , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Ultrassonografia
11.
Front Pharmacol ; 11: 75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153400

RESUMO

INTRODUCTION: Acoustic cluster therapy (ACT) comprises co-administration of a formulation containing microbubble/microdroplet clusters (PS101), together with a regular medicinal drug (e.g., a chemotherapeutic) and local ultrasound (US) insonation of the targeted pathological tissue (e.g., the tumor). PS101 is confined to the vascular compartment and, when the clusters are exposed to regular diagnostic imaging US fields, the microdroplets undergo a phase-shift to produce bubbles with a median diameter of 22 µm when unconstrained by the capillary wall. In vivo these bubbles transiently lodge in the tumor's microvasculature. Low frequency ultrasound (300 kHz) at a low mechanical index (MI = 0.15) is then applied to drive oscillations of the deposited ACT bubbles to induce a range of biomechanical effects that locally enhance extravasation, distribution, and uptake of the co-administered drug, significantly increasing its therapeutic efficacy. METHODS: In this study we investigated the therapeutic efficacy of ACT with liposomal doxorubicin for the treatment of triple negative breast cancer using orthotopic human tumor xenografts (MDA-MB-231-H.luc) in athymic mice (ICR-NCr-Foxn1nu). Doxil® (6 mg/kg, i.v.) was administered at days 0 and 21, each time immediately followed by three sequential ACT (20 ml/kg PS101) treatment procedures (n = 7-10). B-mode and nonlinear ultrasound images acquired during the activation phase were correlated to the therapeutic efficacy. RESULTS: Results show that combination with ACT induces a strong increase in the therapeutic efficacy of Doxil®, with 63% of animals in complete, stable remission at end of study, vs. 10% for Doxil® alone (p < 0.02). A significant positive correlation (p < 0.004) was found between B-mode contrast enhancement during ACT activation and therapy response. These observations indicate that ACT may also be used as a theranostic agent and that ultrasound contrast enhancement during or before ACT treatment may be employed as a biomarker of therapeutic response during clinical use.

12.
Ultrasound Med Biol ; 46(4): 1040-1052, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926750

RESUMO

The stacked-ellipse (SE) algorithm was developed to rapidly segment the uterus on 3-D ultrasound (US) for the purpose of enabling US-guided adaptive radiotherapy (RT) for uterine cervix cancer patients. The algorithm was initialised manually on a single sagittal slice to provide a series of elliptical initialisation contours in semi-axial planes along the uterus. The elliptical initialisation contours were deformed according to US features such that they conformed to the uterine boundary. The uterus of 15 patients was scanned with 3-D US using the Clarity System (Elekta Ltd.) at multiple days during RT and manually contoured (n = 49 images and corresponding contours). The median (interquartile range) Dice similarity coefficient and mean surface-to-surface-distance between the SE algorithm and manual contours were 0.80 (0.03) and 3.3 (0.2) mm, respectively, which are within the ranges of reported inter-observer contouring variabilities. The SE algorithm could be implemented in adaptive RT to precisely segment the uterus on 3-D US.


Assuntos
Ultrassonografia de Intervenção/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Útero/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Feminino , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/radioterapia
13.
Front Pharmacol ; 10: 1299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803049

RESUMO

Introduction: Acoustic Cluster Therapy (ACT) comprises coadministration of a formulation containing microbubble-microdroplet clusters (PS101) together with a regular medicinal drug and local ultrasound (US) insonation of the targeted pathological tissue. PS101 is confined to the vascular compartment and when the clusters are exposed to regular diagnostic imaging US fields, the microdroplets undergo a phase shift to produce bubbles with a median diameter of 22 µm. Low frequency, low mechanical index US is then applied to drive oscillations of the deposited ACT bubbles to induce biomechanical effects that locally enhance extravasation, distribution, and uptake of the coadministered drug, significantly increasing its therapeutic efficacy. Methods: The therapeutic efficacy of ACT with irinotecan (60 mg/kg i.p.) was investigated using three treatment sessions given on day 0, 7, and 14 on subcutaneous human colorectal adenocarcinoma xenografts in mice. Treatment was performed with three back-to-back PS101+US administrations per session with PS101 doses ranging from 0.40-2.00 ml PS101/kg body weight (n = 8-15). To induce the phase shift, 45 s of US at 8 MHz at an MI of 0.30 was applied using a diagnostic US system; low frequency exposure consisted of 1 or 5 min at 500 kHz with an MI of 0.20. Results: ACT with irinotecan induced a strong, dose dependent increase in the therapeutic effect (R2 = 0.95). When compared to irinotecan alone, at the highest dose investigated, combination treatment induced a reduction in average normalized tumour volume from 14.6 (irinotecan), to 5.4 (ACT with irinotecan, p = 0.002) on day 27. Median survival increased from 34 days (irinotecan) to 54 (ACT with irinotecan, p = 0.002). Additionally, ACT with irinotecan induced an increase in the fraction of complete responders; from 7% to 26%. There was no significant difference in the therapeutic efficacy whether the low frequency US lasted 1 or 5 min. Furthermore, there was no significant difference between the enhancement observed in the efficacy of ACT with irinotecan when PS101+US was administered before or after irinotecan. An increase in early dropouts was observed at higher PS101 doses. Both mean tumour volume (on day 27) and median survival indicate that the PS101 dose response was linear in the range investigated.

14.
Cancer Res ; 79(22): 5874-5883, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604713

RESUMO

Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.


Assuntos
Neoplasias da Mama/metabolismo , Colágeno/metabolismo , Animais , Linhagem Celular Tumoral , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Matriz Extracelular/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Fenótipo
15.
Int J Radiat Oncol Biol Phys ; 104(3): 685-693, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30872145

RESUMO

PURPOSE: Adaptive radiation therapy strategies could account for interfractional uterine motion observed in patients with cervix cancer, but the current cone beam computed tomography (CBCT)-based treatment workflow is limited by poor soft-tissue contrast. The goal of the present study was to determine if ultrasound (US) could be used to improve visualization of the uterus, either as a single modality or in combination with CBCT. METHODS AND MATERIALS: Interobserver uterine contour agreement and confidence were compared on 40 corresponding CBCT, US, and CBCT-US-fused images from 11 patients with cervix cancer. Contour agreement was measured using the Dice similarity coefficient (DSC) and mean contour-to-contour distance (MCCD). Observers rated their contour confidence on a scale from 1 to 10. Pairwise Wilcoxon signed-rank tests were used to measure differences in contour agreement and confidence. RESULTS: CBCT-US fused images had significantly better contour agreement and confidence than either individual modality (P < .05), with median (interquartile range [IQR]) values of 0.84 (0.11), 1.26 (0.23) mm, and 7 (2) for the DSC, MCCD, and observer confidence ratings, respectively. Contour agreement was similar between US and CBCT, with median (IQR) DSCs of 0.81 (0.17) and 0.82 (0.14) and MCCDs of 1.75 (1.15) mm and 1.62 (0.74) mm. Observers were significantly more confident in their US-based contours than in their CBCT-based contours (P < .05), with median (IQR) confidence ratings of 7 (2.75) versus 5 (4). CONCLUSIONS: CBCT and US are complementary and improve uterine segmentation precision when combined. Observers could localize the uterus with a similar precision on independent US and CBCT images.


Assuntos
Colo do Útero/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Imagem Multimodal/métodos , Radioterapia Guiada por Imagem/métodos , Ultrassonografia , Neoplasias do Colo do Útero/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador/métodos , Padrões de Referência , Autoimagem , Estatísticas não Paramétricas , Bexiga Urinária/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
16.
Phys Med Biol ; 64(9): 095003, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30917360

RESUMO

Contrast enhanced ultrasound (CEUS) and dynamic contrast enhanced ultrasound (DCE-US) can be used to provide information about the vasculature aiding diagnosis and monitoring of a number of pathologies including cancer. In the development of a CEUS imaging system, there are many choices to be made, such as whether to use plane wave (PW) or focused imaging (FI), and the values for parameters such as transmit frequency, F-number, mechanical index, and number of compounding angles (for PW imaging). CEUS image contrast may also be dependent on subject characteristics, e.g. flow speed and vessel orientation. We evaluated the effect of such choices on vessel contrast for PW and FI in vitro, using 2D ultrasound imaging. CEUS images were obtained using a VantageTM (Verasonics Inc.) and a pulse-inversion (PI) algorithm on a flow phantom. Contrast (C) and contrast reduction (CR) were calculated, where C was the initial ratio of signal in vessel to signal in background and CR was its reduction after 200 frames (acquired in 20 s). Two transducer orientations were used: parallel and perpendicular to the vessel direction. Similar C and CR was achievable for PW and FI by choosing optimal parameter values. PW imaging suffered from high frequency grating lobe artefacts, which may lead to degraded image quality and misinterpretation of data. Flow rate influenced the contrast based on: (1) false contrast increase due to the bubble motion between the PI positive and negative pulses (for both PW and FI), and (2) contrast reduction due to the incoherency caused by bubble motion between the compounding angles (for PW only). The effects were less pronounced for perpendicular transducer orientation compared to a parallel one. Although both effects are undesirable, it may be more straight forward to account for artefacts in FI as it only suffers from the former effect. In conclusion, if higher frame rate imaging is not required (a benefit of PW), FI appears to be a better choice of imaging mode for CEUS, providing greater image quality over PW for similar rates of contrast reduction.


Assuntos
Meios de Contraste , Ultrassonografia/métodos , Algoritmos , Artefatos , Humanos , Imagens de Fantasmas
17.
Artigo em Inglês | MEDLINE | ID: mdl-30908210

RESUMO

Three-dimensional imaging is valuable to noninvasively assess angiogenesis given the complex 3-D architecture of vascular networks. The emergence of high frame rate (HFR) ultrasound, which can produce thousands of images per second, has inspired novel signal processing techniques and their applications in structural and functional imaging of blood vessels. Although highly sensitive vascular mapping has been demonstrated using ultrafast Doppler, the detectability of microvasculature from the background noise may be hindered by the low signal-to-noise ratio (SNR) particularly in the deeper region and without the use of contrast agents. We have recently demonstrated a coherence-based technique, acoustic subaperture imaging (ASAP), for super-contrast vascular imaging and illustrated the contrast improvement using HFR contrast-enhanced ultrasound. In this work, we provide a feasibility study for microvascular imaging using ASAP without contrast agents, and extend its capability from 2-D to volumetric vascular mapping. Using an ultrasound research system and a preclinical probe, we demonstrated the improved visibility of microvascular mapping using ASAP in comparison to ultrafast power Doppler (PD) on a mouse kidney, liver, and tumor without contrast agent injection. The SNR of ASAP images improves in average by 10 dB when compared to PD. In addition, directional velocity mappings were also demonstrated by combining ASAP with the phase information extracted from lag-1 autocorrelation. The 3-D vascular and velocity mapping of the mouse kidney, liver, and tumor were demonstrated by stacking the ASAP images acquired using 2-D ultrasound imaging and a trigger-controlled linear translation stage. The 3-D results depicted clear microvasculature morphologies and functional information in terms of flow direction and velocity in two nontumor models and a tumor model. In conclusion, we have demonstrated a new 3-D in vivo ultrasound microvascular imaging technique with significantly improved SNR over existing ultrafast Doppler.


Assuntos
Imageamento Tridimensional/métodos , Microvasos/diagnóstico por imagem , Neoplasias , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Animais , Estudos de Viabilidade , Feminino , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem
18.
Phys Med Biol ; 64(8): 08NT01, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808011

RESUMO

Radiotherapy treatment plans using dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) reduce the dose to organs at risk (OARs) compared to coplanar VMAT, while maintaining the dose to the planning target volume (PTV). This paper seeks to validate this finding with measurements. DCR-VMAT treatment plans were produced for five patients with primary brain tumours and delivered using a commercial linear accelerator (linac). Dosimetric accuracy was assessed using point dose and radiochromic film measurements. Linac-recorded mechanical errors were assessed by extracting deviations from log files for multi-leaf collimator (MLC), couch, and gantry positions every 20 ms. Dose distributions, reconstructed from every fifth log file sample, were calculated and used to determine deviations from the treatment plans. Median (range) treatment delivery times were 125 s (123-133 s) for DCR-VMAT, compared to 78 s (64-130 s) for coplanar VMAT. Absolute point doses were 0.8% (0.6%-1.7%) higher than prediction. For coronal and sagittal films, respectively, 99.2% (96.7%-100%) and 98.1% (92.9%-99.0%) of pixels above a 20% low dose threshold reported gamma <1 for 3% and 3 mm criteria. Log file analysis showed similar gantry rotation root-mean-square error (RMSE) for VMAT and DCR-VMAT. Couch rotation RMSE for DCR-VMAT was 0.091° (0.086-0.102°). For delivered dose reconstructions, 100% of pixels above a 5% low dose threshold reported gamma <1 for 2% and 2 mm criteria in all cases. DCR-VMAT, for the primary brain tumour cases studied, can be delivered accurately using a commercial linac.


Assuntos
Neoplasias Encefálicas/radioterapia , Posicionamento do Paciente/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Órgãos em Risco , Aceleradores de Partículas , Posicionamento do Paciente/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Rotação
19.
Br J Radiol ; 92(1097): 20180908, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30694086

RESUMO

This paper gives an overview of recent developments in non-coplanar intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Modern linear accelerators are capable of automating motion around multiple axes, allowing efficient delivery of highly non-coplanar radiotherapy techniques. Novel techniques developed for C-arm and non-standard linac geometries, methods of optimization, and clinical applications are reviewed. The additional degrees of freedom are shown to increase the therapeutic ratio, either through dose escalation to the target or dose reduction to functionally important organs at risk, by multiple research groups. Although significant work is still needed to translate these new non-coplanar radiotherapy techniques into the clinic, clinical implementation should be prioritized. Recent developments in non-coplanar radiotherapy demonstrate that it continues to have a place in modern cancer treatment.


Assuntos
Neoplasias/radioterapia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Órgãos em Risco , Aceleradores de Partículas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
20.
Photoacoustics ; 13: 53-65, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30581729

RESUMO

Photoacoustic imaging (PAI) provides information on haemoglobin levels and blood oxygenation (sO2). To facilitate assessment of the variability in sO2 and haemoglobin in tumours, for example in response to therapies, the baseline variability of these parameters was evaluated in subcutaneous head and neck tumours in mice, using a PAI system (MSOTinVision-256TF). Tumours of anaesthetized animals (midazolam-fentanyl-medetomidine) were imaged for 75 min, in varying positions, and repeatedly over 6 days. An increasing linear trend for average tumoural haemoglobin and blood sO2 was observed, when imaging over 75 min. There were no significant differences in these temporal trends, when repositioning tumours. A negative correlation was found between the percent decrease in blood sO2 over 6 days and tumour growth rate. This paper shows the potential of PAI to provide baseline data for assessing the significance of intra- and inter-tumoural variations that may eventually have value for predicting and/or monitoring cancer treatment response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA