Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 111(18): 2775-2777, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734320

RESUMO

Wu and Dong et al.1 report that hepatic soluble epoxide hydrolase (sEH) manipulation impacts amyloid-ß (Aß) deposits and cognitive impairment in mouse models for Alzheimer's disease (AD), suggesting that hepatic sEH activity is a promising therapeutic target to treat AD.


Assuntos
Doença de Alzheimer , Epóxido Hidrolases , Animais , Camundongos , Fígado , Encéfalo , Peptídeos beta-Amiloides
2.
Front Mol Neurosci ; 16: 1163447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465366

RESUMO

Many Alzheimer's disease (AD) patients suffer from altered cerebral blood flow and damaged cerebral vasculature. Cerebrovascular dysfunction could play an important role in this disease. However, the mechanism underlying a vascular contribution in AD is still unclear. Cerebrovascular reactivity (CVR) is a critical mechanism that maintains cerebral blood flow and brain homeostasis. Most current methods to analyze CVR require anesthesia which is known to hamper the investigation of molecular mechanisms underlying CVR. We therefore combined spectroscopy, spectral analysis software, and an implantable device to measure cerebral blood volume fraction (CBVF) and oxygen saturation (SO2) in unanesthetized, freely-moving mice. Then, we analyzed basal CBVF and SO2, and CVR of 5-month-old C57BL/6 mice during hypercapnia as well as during basic behavior such as grooming, walking and running. Moreover, we analyzed the CVR of freely-moving AD mice and their wildtype (WT) littermates during hypercapnia and could find impaired CVR in AD mice compared to WT littermates. Our results suggest that this optomechanical approach to reproducibly getting light into the brain enabled us to successfully measure CVR in unanesthetized freely-moving mice and to find impaired CVR in a mouse model of AD.

3.
Brain Behav Immun ; 112: 51-76, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236326

RESUMO

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Assuntos
COVID-19 , Viroses , Camundongos , Animais , Células T de Memória , Doenças Neuroinflamatórias , Linfócitos T CD8-Positivos , Encéfalo , Memória Imunológica
4.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156424

RESUMO

Biochemical, pathogenic, and human genetic data confirm that GSAP (γ-secretase activating protein), a selective γ-secretase modulatory protein, plays important roles in Alzheimer's disease (AD) and Down's syndrome. However, the molecular mechanism(s) underlying GSAP-dependent pathogenesis remains largely elusive. Here, through unbiased proteomics and single-nuclei RNAseq, we identified that GSAP regulates multiple biological pathways, including protein phosphorylation, trafficking, lipid metabolism, and mitochondrial function. We demonstrated that GSAP physically interacts with the Fe65-APP complex to regulate APP trafficking/partitioning. GSAP is enriched in the mitochondria-associated membrane (MAM) and regulates lipid homeostasis through the amyloidogenic processing of APP. GSAP deletion generates a lipid environment unfavorable for AD pathogenesis, leading to improved mitochondrial function and the rescue of cognitive deficits in an AD mouse model. Finally, we identified a novel GSAP single-nucleotide polymorphism that regulates its brain transcript level and is associated with an increased AD risk. Together, our findings indicate that GSAP impairs mitochondrial function through its MAM localization and that lowering GSAP expression reduces pathological effects associated with AD.


Assuntos
Doença de Alzheimer/patologia , Homeostase , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Sequência de Bases , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Teste de Campo Aberto , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas/genética , Transcrição Gênica
5.
Front Neurosci ; 9: 468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733783

RESUMO

During Pavlovian conditioning, a conditioned stimulus (CS) may act as a predictor of a reward to be delivered in another location. Individuals vary widely in their propensity to engage with the CS (sign tracking) or with the site of eventual reward (goal tracking). It is often assumed that sign tracking involves the association of the CS with the motivational value of the reward, resulting in the CS acquiring incentive value independent of the outcome. However, experimental evidence for this assumption is lacking. In order to test the hypothesis that sign tracking behavior does not rely on a neural representation of the outcome, we employed a reward devaluation procedure. We trained rats on a classic Pavlovian paradigm in which a lever CS was paired with a sucrose reward, then devalued the reward by pairing sucrose with illness in the absence of the CS. We found that sign tracking behavior was enhanced, rather than diminished, following reward devaluation; thus, sign tracking is clearly independent of a representation of the outcome. In contrast, goal tracking behavior was decreased by reward devaluation. Furthermore, when we divided rats into those with high propensity to engage with the lever (sign trackers) and low propensity to engage with the lever (goal trackers), we found that nearly all of the effects of devaluation could be attributed to the goal trackers. These results show that sign tracking and goal tracking behavior may be the output of different associative structures in the brain, providing insight into the mechanisms by which reward-associated stimuli-such as drug cues-come to exert control over behavior in some individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA