Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artif Intell Med ; 151: 102841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658130

RESUMO

BACKGROUND AND OBJECTIVE: In everyday clinical practice, medical decision is currently based on clinical guidelines which are often static and rigid, and do not account for population variability, while individualized, patient-oriented decision and/or treatment are the paradigm change necessary to enter into the era of precision medicine. Most of the limitations of a guideline-based system could be overcome through the adoption of Clinical Decision Support Systems (CDSSs) based on Artificial Intelligence (AI) algorithms. However, the black-box nature of AI algorithms has hampered a large adoption of AI-based CDSSs in clinical practice. In this study, an innovative AI-based method to compress AI-based prediction models into explainable, model-agnostic, and reduced decision support systems (NEAR) with application to healthcare is presented and validated. METHODS: NEAR is based on the Shapley Additive Explanations framework and can be applied to complex input models to obtain the contributions of each input feature to the output. Technically, the simplified NEAR models approximate contributions from input features using a custom library and merge them to determine the final output. Finally, NEAR estimates the confidence error associated with the single input feature contributing to the final score, making the result more interpretable. Here, NEAR is evaluated on a clinical real-world use case, the mortality prediction in patients who experienced Acute Coronary Syndrome (ACS), applying three different Machine Learning/Deep Learning models as implementation examples. RESULTS: NEAR, when applied to the ACS use case, exhibits performances like the ones of the AI-based model from which it is derived, as in the case of the Adaptive Boosting classifier, whose Area Under the Curve is not statistically different from the NEAR one, even the model's simplification. Moreover, NEAR comes with intrinsic explainability and modularity, as it can be tested on the developed web application platform (https://neardashboard.pythonanywhere.com/). CONCLUSIONS: An explainable and reliable CDSS tailored to single-patient analysis has been developed. The proposed AI-based system has the potential to be used alongside the clinical guidelines currently employed in the medical setting making them more personalized and dynamic and assisting doctors in taking their everyday clinical decisions.


Assuntos
Algoritmos , Inteligência Artificial , Sistemas de Apoio a Decisões Clínicas , Sistemas de Apoio a Decisões Clínicas/organização & administração , Humanos
2.
MAGMA ; 32(2): 187-195, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30460430

RESUMO

OBJECTIVE: The aim of this paper is to investigate the use of fully convolutional neural networks (FCNNs) to segment scar tissue in the left ventricle from cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) images. METHODS: A successful FCNN in the literature (the ENet) was modified and trained to provide scar-tissue segmentation. Two segmentation protocols (Protocol 1 and Protocol 2) were investigated, the latter limiting the scar-segmentation search area to the left ventricular myocardial tissue region. CMR-LGE from 30 patients with ischemic-heart disease were retrospectively analyzed, for a total of 250 images, presenting high variability in terms of scar dimension and location. Segmentation results were assessed against manual scar-tissue tracing using one-patient-out cross validation. RESULTS: Protocol 2 outperformed Protocol 1 significantly (p value < 0.05), with median sensitivity and Dice similarity coefficient equal to 88.07% [inter-quartile range (IQR) 18.84%] and 71.25% (IQR 31.82%), respectively. DISCUSSION: Both segmentation protocols were able to detect scar tissues in the CMR-LGE images but higher performance was achieved when limiting the search area to the myocardial region. The findings of this paper represent an encouraging starting point for the use of FCNNs for the segmentation of nonviable scar tissue from CMR-LGE images.


Assuntos
Cicatriz/diagnóstico por imagem , Aprendizado Profundo , Ventrículos do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico por imagem , Meios de Contraste , Feminino , Gadolínio , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Redes Neurais de Computação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA