Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 36(35): 9097-110, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581452

RESUMO

UNLABELLED: Galvanic vestibular stimulation (GVS) uses modulated currents to evoke neuronal activity in vestibular endorgans in the absence of head motion. GVS is typically used for a characterization of vestibular pathologies; for studies on the vestibular influence of gaze, posture, and locomotion; and for deciphering the sensory-motor transformation underlying these behaviors. At variance with the widespread use of this method, basic aspects such as the activated cellular substrate at the sensory periphery or the comparability to motion-induced neuronal activity patterns are still disputed. Using semi-intact preparations of Xenopus laevis tadpoles, we determined the cellular substrate and the spatiotemporal specificity of GVS-evoked responses and compared sinusoidal GVS-induced activity patterns with motion-induced responses in all neuronal elements along the vestibulo-ocular pathway. As main result, we found that, despite the pharmacological block of glutamatergic hair cell transmission by combined bath-application of NMDA (7-chloro-kynurenic acid) and AMPA (CNQX) receptor blockers, GVS-induced afferent spike activity persisted. However, the amplitude modulation was reduced by ∼30%, suggesting that both hair cells and vestibular afferent fibers are normally recruited by GVS. Systematic alterations of electrode placement with respect to bilateral semicircular canal pairs or alterations of the bipolar stimulus phase timing yielded unique activity patterns in extraocular motor nerves, compatible with a spatially and temporally specific activation of vestibulo-ocular reflexes in distinct planes. Despite the different GVS electrode placement in semi-intact X. laevis preparations and humans and the more global activation of vestibular endorgans by the latter approach, this method is suitable to imitate head/body motion in both circumstances. SIGNIFICANCE STATEMENT: Galvanic vestibular stimulation is used frequently in clinical practice to test the functionality of the sense of balance. The outcome of the test that relies on the activation of eye movements by electrical stimulation of vestibular organs in the inner ear helps to dissociate vestibular impairments that cause vertigo and imbalance in patients. This study uses an amphibian model to investigate at the cellular level the underlying mechanism on which this method depends. The outcome of this translational research unequivocally revealed the cellular substrate at the vestibular sensory periphery that is activated by electrical currents, as well as the spatiotemporal specificity of the evoked eye movements, thus facilitating the interpretation of clinical test results.


Assuntos
Potenciais de Ação/fisiologia , Estimulação Elétrica , Neurônios Motores/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Nervo Vestibular/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Movimentos Oculares/fisiologia , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Reflexo Vestíbulo-Ocular/efeitos dos fármacos , Xenopus laevis
2.
Nat Commun ; 6: 7982, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337184

RESUMO

During active movements, neural replicas of the underlying motor commands may assist in adapting motion-detecting sensory systems to an animal's own behaviour. The transmission of such motor efference copies to the mechanosensory periphery offers a potential predictive substrate for diminishing sensory responsiveness to self-motion during vertebrate locomotion. Here, using semi-isolated in vitro preparations of larval Xenopus, we demonstrate that shared efferent neural pathways to hair cells of vestibular endorgans and lateral line neuromasts express cyclic impulse bursts during swimming that are directly driven by spinal locomotor circuitry. Despite common efferent innervation and discharge patterns, afferent signal encoding at the two mechanosensory peripheries is influenced differentially by efference copy signals, reflecting the different organization of body/water motion-detecting processes in the vestibular and lateral line systems. The resultant overall gain reduction in sensory signal encoding in both cases, which likely prevents overstimulation, constitutes an adjustment to increased stimulus magnitudes during locomotion.


Assuntos
Células Ciliadas Vestibulares/fisiologia , Cinestesia/fisiologia , Sistema da Linha Lateral/fisiologia , Locomoção/fisiologia , Neurônios Eferentes/fisiologia , Medula Espinal/fisiologia , Animais , Técnicas In Vitro , Larva , Vias Neurais/fisiologia , Natação , Nervo Vestibular/fisiologia , Xenopus laevis
3.
J Exp Biol ; 218(Pt 11): 1748-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26041033

RESUMO

During motor behavior, corollary discharges of the underlying motor commands inform sensory-motor systems about impending or ongoing movements. These signals generally limit the impact of self-generated sensory stimuli but also induce motor reactions that stabilize sensory perception. Here, we demonstrate in isolated preparations of Xenopus laevis tadpoles that locomotor corollary discharge provokes a retraction of the mechanoreceptive tentacles during fictive swimming. In the absence of sensory feedback, these signals activate a cluster of trigeminal motoneurons that cause a contraction of the tentacle muscle. This corollary discharge encodes duration and strength of locomotor activity, thereby ensuring a reliable coupling between locomotion and tentacle motion. The strict phase coupling between the trigeminal and spinal motor activity, present in many cases, suggests that the respective corollary discharge is causally related to the ongoing locomotor output and derives at least in part from the spinal central pattern generator; however, additional contributions from midbrain and/or hindbrain locomotor centers are likely. The swimming-related retraction might protect the touch-receptive Merkel cells on the tentacle from sensory over-stimulation and damage and/or reduce the hydrodynamic drag. The intrinsic nature of the coupling of tentacle retraction to locomotion is an excellent example of a context-dependent, direct link between otherwise discrete motor behaviors.


Assuntos
Locomoção/fisiologia , Neurônios Motores/fisiologia , Nervo Trigêmeo/fisiologia , Xenopus laevis/fisiologia , Animais , Técnicas In Vitro , Larva/fisiologia , Mecanorreceptores/fisiologia , Contração Muscular , Medula Espinal/fisiologia , Nervo Trigêmeo/citologia
4.
Eur J Neurosci ; 41(10): 1332-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25847143

RESUMO

Optical visualization of neural network activity is limited by imaging system-dependent technical tradeoffs. To overcome these constraints, we have developed a powerful low-cost and flexible imaging system with high spectral variability and unique spatio-temporal precision for simultaneous optical recording and manipulation of neural activity of large cell groups. The system comprises eight high-power light-emitting diodes, a camera with a large metal-oxide-semiconductor sensor and a high numerical aperture water-dipping objective. It allows fast and precise control of excitation and simultaneous low noise imaging at high resolution. Adjustable apertures generated two independent areas of variable size and position for simultaneous optical activation and image capture. The experimental applicability of this system was explored in semi-isolated preparations of larval axolotl (Ambystoma mexicanum) with intact inner ear organs and central nervous circuits. Cyclic galvanic stimulation of semicircular canals together with glutamate- and γ-aminobutyric acid (GABA)-uncaging caused a corresponding modulation of Ca(2+) transients in central vestibular neurons. These experiments revealed specific cellular properties as well as synaptic interactions between excitatory and inhibitory inputs, responsible for spatio-temporal-specific sensory signal processing. Location-specific GABA-uncaging revealed a potent inhibitory shunt of vestibular nerve afferent input in the predominating population of tonic vestibular neurons, indicating a considerable impact of local and commissural inhibitory circuits on the processing of head/body motion-related signals. The discovery of these previously unknown properties of vestibular computations demonstrates the merits of our novel microscope system for experimental applications in the field of neurobiology.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Canais Semicirculares/fisiologia , Nervo Vestibular/fisiologia , Ambystoma mexicanum , Animais , Sinalização do Cálcio , Estimulação Elétrica , Glutamatos/farmacologia , Indóis/farmacologia , Luz , Neurônios/efeitos dos fármacos , Fenilacetatos/farmacologia , Canais Semicirculares/efeitos dos fármacos , Nervo Vestibular/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA