Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17363, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833354

RESUMO

Vector control strategies have been successful in reducing the number of malaria cases and deaths globally, but the spread of insecticide resistance represents a significant threat to disease control. Insecticide resistance has been reported across Anopheles (An.) vector populations, including species within the An. funestus group. These mosquitoes are responsible for intense malaria transmission across sub-Saharan Africa, including in the Democratic Republic of the Congo (DRC), a country contributing > 12% of global malaria infections and mortality events. To support the continuous efficacy of vector control strategies, it is essential to monitor insecticide resistance using molecular surveillance tools. In this study, we developed an amplicon sequencing ("Amp-seq") approach targeting An. funestus, and using multiplex PCR, dual index barcoding, and next-generation sequencing for high throughput and low-cost applications. Using our Amp-seq approach, we screened 80 An. funestus field isolates from the DRC across a panel of nine genes with mutations linked to insecticide resistance (ace-1, CYP6P4, CYP6P9a, GSTe2, vgsc, and rdl) and mosquito speciation (cox-1, mtND5, and ITS2). Amongst the 18 non-synonymous mutations detected, was N485I, in the ace-1 gene associated with carbamate resistance. Overall, our panel represents an extendable and much-needed method for the molecular surveillance of insecticide resistance in An. funestus populations.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Anopheles/genética , República Democrática do Congo , Mosquitos Vetores/genética , Malária/prevenção & controle , Piretrinas/farmacologia
2.
Malar J ; 20(1): 464, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906124

RESUMO

BACKGROUND: Malaria vector control in the Democratic Republic of the Congo is plagued by several major challenges, including inadequate infrastructure, lack of access to health care systems and preventative measures, and more recently the widespread emergence of insecticide resistance among Anopheles mosquitoes. Across 26 provinces, insecticide resistance has been reported from multiple sentinel sites. However, to date, investigation of molecular resistance mechanisms among Anopheles vector populations in DRC has been more limited. METHODS: Adult Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. were collected from two sites in Sud-Kivu province and one site in Haut-Uélé province and PCR-screened for the presence of 11 resistance mutations, to provide additional information on frequency of resistance mechanisms in the eastern DRC, and to critically evaluate the utility of these markers for prospective country-wide resistance monitoring. RESULTS: L1014F-kdr and L1014S-kdr were present in 75.9% and 56.7% of An. gambiae s.l. screened, respectively, with some individuals harbouring both resistant alleles. Across the three study sites, L43F-CYP4J5 allele frequency ranged from 0.42 to 0.52, with evidence for ongoing selection. G119S-ace1 was also identified in all sites but at lower levels. A triple mutant haplotype (comprising the point mutation CYP6P4-I236M, the insertion of a partial Zanzibar-like transposable element and duplication of CYP6AA1) was present at high frequencies. In An. funestus s.l. cis-regulatory polymorphisms in CYP6P9a and CYP6P9b were detected, with allele frequencies ranging from 0.82 to 0.98 and 0.65 to 0.83, respectively. CONCLUSIONS: This study screened the most up-to-date panel of DNA-based resistance markers in An. gambiae s.l. and An. funestus s.l. from the eastern DRC, where resistance data is lacking. Several new candidate markers (CYP4J5, G119S-ace1, the triple mutant, CYP6P9a and CYP6P9b) were identified, which are diagnostic of resistance to major insecticide classes, and warrant future, larger-scale monitoring in the DRC to inform vector control decisions by the National Malaria Control Programme.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Animais , Anopheles/efeitos dos fármacos , República Democrática do Congo , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos
3.
Trans R Soc Trop Med Hyg ; 115(11): 1339-1344, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324683

RESUMO

BACKGROUND: Insecticide resistance has become a widespread problem causing a decline in the effectiveness of vector control tools in sub-Saharan Africa. In this situation, ongoing monitoring of vector susceptibility to insecticides is encouraged by the WHO to guide national malaria control programmes. Our study was conducted from April to November 2018 in Tchonka (Sud-Kivu, Democratic Republic of the Congo) and reported primary data on the resistance status of Anopheles funestus and Anopheles gambiae. METHODS: Insecticide susceptibility bioassays were performed on wild populations of A. funestus and A. gambiae using WHO insecticide-impregnated papers at discriminating concentration. In addition, PCR was performed to identify mosquito species and to detect kdr and ace-1R mutations involved in insecticide resistance. RESULTS: Bioassay results show resistance to all tested insecticides except pirimiphos-methyl, propoxur, fenitrothion and malathion with a mortality rate ranging from 95.48 to 99.86%. The addition of piperonyl butoxide (PBO) increased the susceptibility of vectors to deltamethrin and alpha-cypermethrin by exhibiting a mortality ranging from 91.50 to 95.86%. The kdr mutation was detected at high frequencies (approximately 0.98) within A. gambiae while ace-1R was not detected. CONCLUSIONS: This study provides useful data on the insecticide resistance profiles of malaria vector populations to better manage vector control. Our results highlight that, despite the high level of resistance, organophosphorus compounds and pyrethroids + PBO remain effective against the vectors.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , República Democrática do Congo/epidemiologia , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Piretrinas/farmacologia
4.
Curr Biol ; 31(11): 2310-2320.e5, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857432

RESUMO

Wolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An. gambiae complex, the primary vectors of Plasmodium malaria in Sub-Saharan Africa, Wolbachia DNA sequences at low density and infection frequencies have been detected. As the majority of studies have used highly sensitive nested PCR as the only method of detection, more robust evidence is required to determine whether Wolbachia strains are established as endosymbionts in Anopheles species. Here, we describe high-density Wolbachia infections in geographically diverse populations of An. moucheti and An. demeilloni. Fluorescent in situ hybridization localized a heavy infection in the ovaries of An. moucheti, and maternal transmission was observed. Genome sequencing of both Wolbachia strains obtained genome depths and coverages comparable to those of other known infections. Notably, homologs of cytoplasmic incompatibility factor (cif) genes were present, indicating that these strains possess the capacity to induce the cytoplasmic incompatibility phenotype, which allows Wolbachia to spread through host populations. These strains should be further investigated as candidates for use in Wolbachia biocontrol strategies in Anopheles aiming to reduce the transmission of malaria.


Assuntos
Anopheles , Malária , Wolbachia , Animais , Anopheles/genética , Hibridização in Situ Fluorescente , Herança Materna , Mosquitos Vetores , Wolbachia/genética
5.
Malar J ; 19(1): 425, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228693

RESUMO

BACKGROUND: Malaria remains a major public health concern in the Democratic Republic of the Congo (DRC) and its control is affected by recurrent conflicts. Médecins Sans Frontières (MSF) initiated several studies to better understand the unprecedented incidence of malaria to effectively target and implement interventions in emergency settings. The current study evaluated the main vector species involved in malaria transmission and their resistance to insecticides, with the aim to propose the most effective tools and strategies for control of local malaria vectors. METHODS: This study was performed in 52 households in Shamwana (Katanga, 2014), 168 households in Baraka (South Kivu, 2015) and 269 households in Kashuga (North Kivu, 2017). Anopheles vectors were collected and subjected to standardized Word Health Organization (WHO) and Center for Disease Control (CDC) insecticide susceptibility bioassays. Mosquito species determination was done using PCR and Plasmodium falciparum infection in mosquitoes was assessed by ELISA targeting circumsporozoite protein. RESULTS: Of 3517 Anopheles spp. mosquitoes collected, Anopheles gambiae sensu lato (s.l.) (29.6%) and Anopheles funestus (69.1%) were the main malaria vectors. Plasmodium falciparum infection rates for An. gambiae s.l. were 1.0, 2.1 and 13.9% for Shamwana, Baraka and Kashuga, respectively. Anopheles funestus showed positivity rates of 1.6% in Shamwana and 4.4% in Baraka. No An. funestus were collected in Kashuga. Insecticide susceptibility tests showed resistance development towards pyrethroids in all locations. Exposure to bendiocarb, malathion and pirimiphos-methyl still resulted in high mosquito mortality. CONCLUSIONS: This is one of only few studies from these conflict areas in DRC to report insecticide resistance in local malaria vectors. The data suggest that current malaria prevention methods in these populations are only partially effective, and require additional tools and strategies. Importantly, the results triggered MSF to consider the selection of a new insecticide for indoor residual spraying (IRS) and a new long-lasting insecticide-treated net (LLIN). The reinforcement of correct usage of LLINs and the introduction of targeted larviciding were also included as additional vector control tools as a result of the studies.


Assuntos
Anopheles/parasitologia , Resistência a Inseticidas , Malária Falciparum/transmissão , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , República Democrática do Congo , Feminino , Povos Indígenas , Refugiados
6.
Wellcome Open Res ; 3: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483601

RESUMO

Background:  Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the  Anopheles (An.) genera, but has recently been found in  An. gambiae s.l. populations in West Africa.  As there are numerous  Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine  Wolbachia prevalence rates, characterise novel  Wolbachia strains and determine any correlation between the presence of  Plasmodium,  Wolbachia and the competing bacterium  Asaia. Methods:  Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017.  Molecular analysis was undertaken using quantitative PCR, Sanger sequencing,  Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial  16S rRNA gene.  Results: Novel  Wolbachia strains were discovered in five species:  An. coluzzii,  An. gambiae s.s.,  An. arabiensis,  An. moucheti and  An. species A, increasing the number of  Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with  Wolbachia supergroup B strains.  We also provide evidence for resident strain variants within  An. species A.  Wolbachia is the dominant member of the microbiome in  An. moucheti and  An. species A but present at lower densities in  An. coluzzii.  Interestingly, no evidence of  Wolbachia/Asaia co-infections was seen and  Asaia infection densities were shown to be variable and location dependent.  Conclusions: The important discovery of novel  Wolbachia strains in  Anopheles provides greater insight into the prevalence of resident  Wolbachia strains in diverse malaria vectors.  Novel  Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other  Anopheles mosquito species, which could be used for population replacement or suppression control strategies.

7.
Trans R Soc Trop Med Hyg ; 112(8): 405-407, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085272

RESUMO

The mosquito fauna of the Democratic Republic of Congo remains understudied, including that of the province of Sud Kivu. To improve understanding of species presenting Sud Kivu, adult mosquitoes were collected from houses and larvae were collected from standing water at altitudes between 1627 and 1875 m above sea level. Morphological and molecular methods were used to identify the species of Anopheles collected. Six species were found, including several primary and potential secondary malaria vectors. Further work is needed to characterize mosquito populations in Sud Kivu, as well as to improve methods for identifying Anopheles in general.


Assuntos
Anopheles/genética , Malária , Mosquitos Vetores/genética , Animais , República Democrática do Congo , Humanos , Malária/transmissão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA