Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38949746

RESUMO

Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.

2.
J Liposome Res ; : 1-18, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591935

RESUMO

The clinical use of selegiline hydrochloride in conventional dosage forms is to reduce the progression of Parkinson's disease (PD). However, its limited access to the brain, short half-life, and first-pass metabolism minimize brain uptake. Nano-based liposomes offer promising tools for brain-targeted delivery of therapeutics, especially intranasally administered cationic liposomes that target the brain region via the olfactory route and reduce biodistribution. In the present work, cationic liposomes encapsulated with selegiline hydrochloride were fabricated for intranasal administration against PD. The liposomes were initially optimized by Box Behnken design, and the selected run was coated with stearylamine to provide a cationic charge to the liposomes. The final coated liposomes, SH-LP3, demonstrated a minimum size of 173 ± 2.13 nm, an ideal zeta potential of +16 ± 1.98, and achieved a maximum entrapment efficiency of 40.14 ± 1.83%. Morphology analysis showed the spherical shape of liposomes in the size range of 100-200 nm. The in vitro cytotoxicity assay in SHSY5Y cell lines showed a significant decrease in toxicity, almost ten times less, compared to pure selegiline hydrochloride. Animal studies on rotenone-lesioned C57BL6 mice model for PD were performed to investigate the effect of intranasally administered liposomes. The SH-LP3 formulation exhibited remarkable effectiveness in relieving symptoms of PD. This extensive analysis emphasizes the possibility of intranasally administered SH-LP3 liposomes as a feasible treatment option for PD. The formulation not only delivers continuous drug release but also displays better safety and efficacy, providing a platform for additional studies and growth in the domain of PD treatment.

3.
Int J Biol Macromol ; 244: 125374, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330096

RESUMO

Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.


Assuntos
Quitosana , Pele , Humanos , Administração Cutânea , Ácido Hialurônico , Celulose , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos
5.
Environ Sci Pollut Res Int ; 30(18): 51782-51791, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36820973

RESUMO

More research is needed to understand the benefits of environmentally safe and human-friendly herbal-based sunscreen agents against ultraviolet (UV) radiation. Because of the toxicity of synthetic chemicals in photoprotective agents, researchers were increasingly focusing on herbal photoprotective formulations. The photoprotective agent's skin retention can be considerably improved by forming solid lipid nanoparticles (SLN). The study's objective is to evaluate the photoprotective potential of sunscreen cream containing spinach (Spinacia oleracea)-loaded SLN. A solvent emulsification technique was used to develop the spinach-loaded SLN. The various characterization techniques of the developed SLN were performed. Out of all the formulations, the optimized one was fitted into cream and estimated for its photoprotective action. The images obtained from scanning electron microscopy (SEM) revealed the morphological characteristics of the prepared SLN. The sunscreen cream's viscosity, spreadability, extrudability, and release rate were within acceptable limits. The formulation's in vitro and in vivo sun protection factor (SPF) was reported to be 15.9 and 14.75, respectively. The results indicated that the prepared formulation possesses good photoprotective action. The accelerated stability tests were carried out with no noticeable changes in the parameters. Our work demonstrated the possibility of using spinach-loaded SLN as a photoprotective agent in cosmetic formulations.


Assuntos
Chenopodiaceae , Nanopartículas , Humanos , Protetores Solares/química , Nanopartículas/química , Fator de Proteção Solar , Pele , Spinacia oleracea
6.
Ageing Res Rev ; 83: 101806, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427765

RESUMO

Neurodegenerative diseases are the most widely affected disease condition in an aging population. The treatment available reduces the elevated manifestations but is ineffective due to the drug's poor bioavailability, plasma stability, and permeability across the blood-brain barrier (BBB). Until now, no therapeutic compound has been able to stop the progression of neurodegenerative disease. Even the available therapeutic moiety manages it with possible adverse effects up to the later stage. Hence, phytobioactive compounds of plant origin offer effective treatment strategies against neurodegenerative diseases. The only difficulty of these phytobioactive compounds is permeability across the BBB. Engineered nanocarriers such as liposomes provide high lipid permeability across BBB. Liposomes have unique physicochemical properties that are widely investigated for their application in diagnosing and treating neurodegenerative diseases. The surface modification on liposomes by peptides, antibodies, and RNA aptamers offers receptor targeting. These brain-targeted approaches by liposomes improve the efficacy of phytoconstituents. Additional surface modification methods are utilized on liposomes, which increases the brain-targeted delivery of phytobioactive compounds. The marketing strategy of the liposomal delivery system is in its peak mode, where it has the potential to modify the existing therapy. This review will summarize the brain target liposomal delivery of phytobioactive compounds as a novel disease-modifying agent for treating neurodegenerative diseases.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Humanos , Idoso , Lipossomos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanopartículas/uso terapêutico , Barreira Hematoencefálica
8.
Curr Neuropharmacol ; 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36237157

RESUMO

Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND and increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. Drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micron-sized drug delivery needles that are self-administrable. They can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for phytobioactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.

10.
Bioinorg Chem Appl ; 2022: 9150205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992047

RESUMO

The demand for drug delivery systems (DDS) to treat Parkinson's disease (PD) is still high, and microneedle (MN) assisted transdermal DDS offers enormous potential. Herbal products for PD have been shown to have antioxidant effects in reducing dopaminergic neurons from degeneration. Here, we attempted to incorporate solid lipid nanoparticles (SLNs) of Bacopa monnieri into dissolvable microneedle arrays and evaluate its neuroprotective activity. The bloodless and painless microneedle arrays through the transdermal route deliver the drug across the blood-brain barrier at the desired concentration. The quality by design (QbD) approach was employed for optimizing the SLNs formulations. The mechanical strength, in vitro release studies, ex-vivo permeation investigation, skin irritation test, histopathological studies, biochemical studies, and behavioural tests SLNs loaded microneedle arrays were performed. The microneedle patches obtained were shown to be mechanically robust and were also found to be nonirritant with a decreased degree of bradykinesia, high motor coordination, and balance ability. Compared to systemic delivery systems, such an MN method can achieve a considerably lower effective dose and allow long-term home-based treatment.

11.
J Mol Neurosci ; 72(3): 653-676, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34697770

RESUMO

Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington disease, amyotrophic lateral sclerosis, and prion disease affect any part of the brain. The complete mechanism of ND is unknown, but there are some molecular mechanism and chemical process. Natural compounds have better compatibility with the human body along with lesser side effects. Moreover, several studies showed that various natural compounds have significant neuroprotective, potent antioxidant, and anti-inflammatory properties, which are effective for treating the different type of ND. In ND, natural compounds act by various mechanisms such as preventing the generation of reactive oxygen species (ROS), eliminating destructed biomolecules before their accumulation affects cell metabolism, and improving the disease conditions. But due to the presence of the blood-brain barrier (BBB) layer and unfavorable pharmacokinetic properties of natural compounds, their delivery into the brain is limited. To minimize this problem and enhance drug delivery into the brain with an effective therapeutic dose, there is a need to develop a practical novel approach. The various studies showed that nanoformulations and microneedles (MN) containing natural compounds such as quercetin, curcumin, resveratrol, chrysin, piperine, ferulic acid, huperzine A, berberine, baicalein, hesperetin, and retinoic acid effectively improved many ND. In this review, the effect of such natural drug-loaded nanoformulation and MN patches on ND management is discussed, along with their merits and demerits. This review aims to introduce different novel approaches for enhancing natural drug delivery into the brain to manage various neurodegenerative diseases.


Assuntos
Produtos Biológicos , Curcumina , Doenças Neurodegenerativas , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA