Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8080, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577817

RESUMO

The carbon net negative conversion of bio-char, the low value byproduct of pyrolysis bio-oil production from biomass, to high value, very high purity, highly crystalline flake graphite agglomerates with rationally designed shape and size tailored for lithium-ion battery energy storage material is reported. The process is highly efficient, 0.41 g/Wh; the energy content of its co-product of the process, bio-oil, exceeds that needed to power the process. It is shown that the shape of the starting material is retained during the transformation, allowing the ultimate morphology of the graphite agglomerates to be engineered from relatively malleable biomass. In contrast to commercial graphite production, the process can be performed at small scale with low equipment costs, enabling individual research laboratories to produce Li-ion grade graphite with customizable shape, size and porosity for Si/graphite composite and other graphite involved anodes. The mechanism of the graphitization of bio-char, a "non-graphitizable" carbon, is explored, suggesting the molten metal catalyst is absorbed into the pore structure, transported through and transforming the largely immobile biochar. Finally, the transformation of biomass to rationally designed graphite morphologies with Li-ion anode performance that closely mimic commercial shaped graphite is demonstrated.


Assuntos
Grafite , Lítio , Biomassa , Carbono/química , Fontes de Energia Elétrica , Grafite/química , Íons/química , Lítio/química
2.
ACS Appl Mater Interfaces ; 9(33): 27421-27426, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28796946

RESUMO

Novel Pd-based catalysts (i.e., Pd and Pd-Cu) supported on graphitic carbon nitride (g-C3N4) were prepared for nitrite and nitrate hydrogenation. The catalysts prepared by ethylene glycol reduction exhibited ultrafine Pd and Pd-Cu nanoparticles (∼2 nm), and they showed high reactivity, high selectivity toward nitrogen gas over byproduct ammonium, and excellent stability over multiple reaction cycles. The unique nitrogen-abundant surface, porous structure, and hydrophilic nature of g-C3N4 facilitates metal nanoparticle dispersion, mass transfer of reactants, and nitrogen coupling for nitrogen gas production to improve catalytic performance.

3.
Environ Sci Technol ; 50(23): 12938-12948, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934277

RESUMO

Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.


Assuntos
Grafite/química , Purificação da Água , Catálise , Luz , Fenóis
4.
ACS Appl Mater Interfaces ; 8(28): 17739-44, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27387354

RESUMO

We report a facile synthesis method for carbon nanofiber (CNF) supported Pd catalysts via one-pot electrospinning and their application for nitrite hydrogenation. A mixture of Pd acetylacetonate (Pd(acac)2), polyacrylonitrile (PAN), and nonfunctionalized multiwalled carbon nanotubes (MWCNTs) was electrospun and thermally treated to produce Pd/CNF-MWCNT catalysts. The addition of MWCNTs with a mass loading of 1.0-2.5 wt % (to PAN) significantly improved nitrite reduction activity compared to the catalyst without MWCNT addition. The results of CO chemisorption confirmed that the addition of MWCNTs increased Pd exposure on CNFs and hence improved catalytic activity.

5.
J Am Chem Soc ; 132(24): 8278-9, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20521830

RESUMO

Nanoparticulate zirconium tungstate prepared through hydrothermal methods was found to autohydrate under ambient conditions. This results in positive thermal expansion, limiting its usefulness for controlled thermal expansion composites. TEM and BET studies provided strong evidence that the cause of autohydration is a result of structural defects present in the nanoparticles, while kinetics are governed by surface area, suggesting that processing methods can be used to minimize or overcome this problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA