Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chaos ; 34(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198675

RESUMO

Real-world complex systems such as the earth's climate, ecosystems, stock markets, and combustion engines are prone to dynamical transitions from one state to another, with catastrophic consequences. State variables of such systems often exhibit aperiodic fluctuations, either chaotic or stochastic in nature. Often, the parameters describing a system vary with time, showing time dependency. Constrained by these effects, it becomes difficult to be warned of an impending critical transition, as such effects contaminate the precursory signals of the transition. Therefore, a need for efficient and reliable early-warning signals (EWSs) in such complex systems is in pressing demand. Motivated by this fact, in the present work, we analyze various EWSs in the context of a non-autonomous turbulent thermoacoustic system. In particular, we investigate the efficacy of different EWS in forecasting the onset of thermoacoustic instability (TAI) and their reliability with respect to the rate of change of the control parameter. This is the first experimental study of tipping points in a non-autonomous turbulent thermoacoustic system. We consider the Reynolds number (Re) as the control parameter, which is varied linearly with time at finite rates. The considered EWSs are derived from critical slowing down, spectral properties, and fractal characteristics of the system variables. The state of TAI is associated with large amplitude acoustic pressure oscillations that could lead thermoacoustic systems to break down. We consider acoustic pressure fluctuations as a potential system variable to perform the analysis. Our analysis shows that irrespective of the rate of variation of the control parameter, the Hurst exponent and variance of autocorrelation coefficients warn of an impending transition well in advance and are more reliable than other EWS measures. Additionally, we show the variation in the warning time to an impending TAI with rates of change of the control parameter. We also investigate the variation in amplitudes of the most significant modes of acoustic pressure oscillations with the Hurst exponent. Such variations lead to scaling laws that could be significant in prediction and devising control actions to mitigate TAI.

2.
Phys Rev E ; 107(2-1): 024219, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932584

RESUMO

In the context of statistical physics, critical phenomena are accompanied by power laws having a singularity at the critical point where a sudden change in the state of the system occurs. In this work we show that lean blowout (LBO) in a turbulent thermoacoustic system is accompanied by a power law leading to finite-time singularity. As a crucial discovery of the system dynamics approaching LBO, we unravel the existence of the discrete scale invariance (DSI). In this context, we identify the presence of log-periodic oscillations in the temporal evolution of the amplitude of the dominant mode of low-frequency oscillations (A_{f}) existing in pressure fluctuations preceding LBO. The presence of DSI indicates the recursive development of blowout. Additionally, we find that A_{f} shows a faster-than-exponential growth and becomes singular when blowout occurs. We then present a model that depicts the evolution of A_{f} based on log-periodic corrections to the power law associated with its growth. Using the model, we find that blowouts can be predicted even several seconds earlier. The predicted time of LBO is in good agreement with the actual time of occurrence of LBO obtained from the experiment.

3.
Phys Rev E ; 104(1-2): 015111, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412276

RESUMO

We report the occurrence of flow reversals induced by the attractor-merging crisis in Rayleigh-Bénard convection of electrically conducting low-Prandtl-number fluids in the presence of a uniform external horizontal magnetic field. The simultaneous collision of two coexisting chaotic attractors with an unstable fixed point and its associated stable manifold takes place in the higher-dimensional phase space of the system, leading to a single merged chaotic attractor. The effect of strength of the magnetic field on the flow reversal phenomena is also explored in detail.

4.
J Biol Chem ; 297(1): 100820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029589

RESUMO

CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3',5'-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network-based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Família Multigênica , Polifosfatos/metabolismo , Adenilil Ciclases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Íons , Modelos Moleculares , Multimerização Proteica , Especificidade por Substrato , Sulfolobus acidocaldarius/enzimologia , Água
5.
Nucleic Acids Res ; 49(17): 9607-9624, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33880546

RESUMO

Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2'-PO4 to NAD+ yielding RNA 2'-OH and ADP-ribose-1',2'-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 µM), ADP-ribose (∼96 µM) and ADP (∼123 µM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2'-PO4 (mimicking the substrate RNA 2'-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ ß-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.


Assuntos
Proteínas de Bactérias/química , Cytophagaceae/enzimologia , NAD/química , Fosfotransferases/química , Apoenzimas/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligantes , Modelos Moleculares , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/química , Fosfotransferases/genética , Ligação Proteica , Conformação Proteica , RNA/metabolismo
6.
RNA ; 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619169

RESUMO

RtcB enzymes comprise a widely distributed family of manganese- and GTP-dependent RNA repair enzymes that join 2',3'-cyclic phosphate ends to 5'-OH ends via RtcB-(histidinyl-N)-GMP, RNA 3'-phosphate, and RNA3'pp5'G intermediates. RtcB can ligate either 5'-OH RNA or 5'-OH DNA strands in vitro. The nucleic acid contacts of RtcB are uncharted. Here we report a 2.7 Å crystal structure of Pyrococcus horikoshii RtcB in complex with a 6-mer 5'-OH DNA oligonucleotide HOA1pT2pG3pT4pC5pC6, which reveals enzymic contacts of Asn202 to the terminal 5'-OH nucleophile; Arg238 to the A1pT2 and T2pG3 phosphates; Arg190 and Gln194 to the T2pG3 phosphate; and an Arg190 π-cation interaction with the G3 nucleobase. The structural insights affirm functional studies of E. coli RtcB that implicated the conserved counterpart of Arg238 in engagement of the 5'-OH strand for ligation. The essential active site Cys98 that coordinates two manganese ions is oxidized to cysteine sulfonic acid in our structure, raising the prospect that RtcB activity might be sensitive to modulation during oxidative stress.

7.
Phys Rev E ; 102(1-1): 013107, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795050

RESUMO

The classical Rayleigh-Bénard convection (RBC) system is known to exhibit either subcritical or supercritical transition to convection in the presence or absence of rotation and/or magnetic field. However, the simultaneous exhibition of subcritical and supercritical branches of convection in plane layer RBC depending on the initial conditions, to the best of our knowledge, has not been reported so far. Here, we report the phenomenon of simultaneous occurrence of subcritical and supercritical branches of convection in overstable RBC of electrically conducting low Prandtl number fluids (liquid metals) in the presence of an external uniform horizontal magnetic field and rotation about the vertical axis. Extensive three-dimensional (3D) direct numerical simulations (DNS) and low-dimensional modeling of the system, performed in the ranges 750≤Ta≤3000 and 0

8.
Nat Microbiol ; 5(1): 216-225, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844299

RESUMO

Motility structures are vital in all three domains of life. In Archaea, motility is mediated by the archaellum, a rotating type IV pilus-like structure that is a unique nanomachine for swimming motility in nature. Whereas periplasmic FlaF binds the surface layer (S-layer), the structure, assembly and roles of other periplasmic components remain enigmatic, limiting our knowledge of the archaellum's functional interactions. Here, we find that the periplasmic protein FlaG and the association with its paralogue FlaF are essential for archaellation and motility. Therefore, we determine the crystal structure of Sulfolobus acidocaldarius soluble FlaG (sFlaG), which reveals a ß-sandwich fold resembling the S-layer-interacting FlaF soluble domain (sFlaF). Furthermore, we solve the sFlaG2-sFlaF2 co-crystal structure, define its heterotetrameric complex in solution by small-angle X-ray scattering and find that mutations that disrupt the complex abolish motility. Interestingly, the sFlaF and sFlaG of Pyrococcus furiosus form a globular complex, whereas sFlaG alone forms a filament, indicating that FlaF can regulate FlaG filament assembly. Strikingly, Sulfolobus cells that lack the S-layer component bound by FlaF assemble archaella but cannot swim. These collective results support a model where a FlaG filament capped by a FlaG-FlaF complex anchors the archaellum to the S-layer to allow motility.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Periplasma/metabolismo , Sulfolobus acidocaldarius/fisiologia , Proteínas Arqueais/genética , Membrana Celular/metabolismo , Flagelos/fisiologia , Modelos Biológicos , Modelos Moleculares , Movimento , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
9.
Nucleic Acids Res ; 47(22): 11826-11838, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31722405

RESUMO

Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2',3'-cyclic-PO4 and 5'-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave ß sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution-as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4-that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.


Assuntos
Domínio Catalítico , Guanosina Trifosfato/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Candida albicans , Domínio Catalítico/genética , Cristalografia por Raios X , Modelos Moleculares , Nucleotidases/química , Polinucleotídeo 5'-Hidroxiquinase/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , RNA Ligase (ATP)/genética , Relação Estrutura-Atividade
10.
RNA ; 25(7): 783-792, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019096

RESUMO

The enzyme Tpt1 removes the 2'-PO4 at the splice junction generated by fungal tRNA ligase; it does so via a two-step reaction in which (i) the internal RNA 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-ADP-ribosyl intermediate; and (ii) transesterification of the ribose O2″ to the 2'-phosphodiester yields 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate products. The role that Tpt1 enzymes play in taxa that have no fungal-type RNA ligase remains obscure. An attractive prospect is that Tpt1 enzymes might catalyze reactions other than internal RNA 2'-PO4 removal, via their unique NAD+-dependent transferase mechanism. This study extends the repertoire of the Tpt1 enzyme family to include the NAD+-dependent conversion of RNA terminal 2' and 3' monophosphate ends to 2'-OH and 3'-OH ends, respectively. The salient finding is that different Tpt1 enzymes vary in their capacity and positional specificity for terminal phosphate removal. Clostridium thermocellum and Aeropyrum pernix Tpt1 proteins are active on 2'-PO4 and 3'-PO4 ends, with a 2.4- to 2.6-fold kinetic preference for the 2'-PO4 The accumulation of a terminal 3'-phospho-ADP-ribosylated RNA intermediate during the 3'-phosphotransferase reaction suggests that the geometry of the 3'-p-ADPR adduct is not optimal for the ensuing transesterification step. Chaetomium thermophilum Tpt1 acts specifically on a terminal 2'-PO4 end and not with a 3'-PO4 In contrast, Runella slithyformis Tpt1 and human Tpt1 are ineffective in removing either a 2'-PO4 or 3'-PO4 end.


Assuntos
Aeropyrum/enzimologia , Clostridium thermocellum/enzimologia , NAD/metabolismo , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA/metabolismo , Humanos , RNA/genética , Capuzes de RNA , Splicing de RNA , Proteína Tumoral 1 Controlada por Tradução
11.
Nat Commun ; 10(1): 218, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644400

RESUMO

Tpt1 is an essential agent of fungal tRNA splicing that removes the 2'-PO4 at the splice junction generated by fungal tRNA ligase. Tpt1 catalyzes a unique two-step reaction whereby the 2'-PO4 attacks NAD+ to form an RNA-2'-phospho-ADP-ribosyl intermediate that undergoes transesterification to yield 2'-OH RNA and ADP-ribose-1″,2″-cyclic phosphate products. Because Tpt1 is inessential in exemplary bacterial and mammalian taxa, Tpt1 is seen as an attractive antifungal target. Here we report a 1.4 Šcrystal structure of Tpt1 in a product-mimetic complex with ADP-ribose-1″-phosphate in the NAD+ site and pAp in the RNA site. The structure reveals how Tpt1 recognizes a 2'-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation. This study also provides evidence that a bacterium has an endogenous phosphorylated substrate with which Tpt1 reacts.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium thermocellum/enzimologia , RNA de Transferência/metabolismo , Adenosina Difosfato Ribose/análogos & derivados , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Ligantes , NAD/metabolismo , Fosfatos/metabolismo , Conformação Proteica
12.
Nucleic Acids Res ; 47(3): 1428-1439, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30590734

RESUMO

Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)-AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the ß and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2'-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure-function data for Saccharomyces cerevisiae Trl1.


Assuntos
Chaetomium/química , DNA Ligase Dependente de ATP/química , Diester Fosfórico Hidrolases/química , Polinucleotídeo 5'-Hidroxiquinase/química , Polinucleotídeo Ligases/química , Relação Estrutura-Atividade , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Domínio Catalítico , Chaetomium/enzimologia , Cristalografia por Raios X , DNA Ligase Dependente de ATP/genética , Metais/química , Diester Fosfórico Hidrolases/genética , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo Ligases/genética , Conformação Proteica , Domínios Proteicos , Splicing de RNA/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia
13.
Acta Crystallogr D Struct Biol ; 74(Pt 11): 1105-1114, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387769

RESUMO

The small winged helix-turn-helix (wHTH) proteins of the Lrs14 family are major transcriptional regulators and act as archaeal biofilm regulators (AbfRs) in the crenarchaeote Sulfolobus acidocaldarius. Here, the first crystal structure of an AbfR ortholog, AbfR2, the deletion of which is known to impair biofilm formation, is presented. Like most other wHTH orthologs, AbfR2 is dimeric in solution as well as in its 2.45 Šresolution crystal structure. Given the presence of three independent AbfR2 dimers in the asymmetric unit, the crystal structure shows a considerable degree of conformational variation within the dimer, the antiparallel orientations of which are stabilized by coiled-coil interaction between H4 helices. Conserved anchor interactions between helices H0 and H4 of AbfR2 further contribute to dimer stabilization. The combined structural and bioinformatic analysis reveals cluster-specific structural differences between different members of the Lrs14 protein family.


Assuntos
Proteínas Arqueais/química , Biofilmes/crescimento & desenvolvimento , Modelos Moleculares , Conformação Proteica , Sulfolobus acidocaldarius/metabolismo , Cristalografia por Raios X , Sulfolobus acidocaldarius/crescimento & desenvolvimento
14.
Nucleic Acids Res ; 46(18): 9617-9624, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30202863

RESUMO

RNA 2'-phosphotransferase Tpt1 converts an internal RNA 2'-monophosphate to a 2'-OH via a two-step NAD+-dependent mechanism in which: (i) the 2'-phosphate attacks the C1″ of NAD+ to expel nicotinamide and form a 2'-phospho-ADP-ribosylated RNA intermediate; and (ii) the ADP-ribose O2″ attacks the phosphate of the RNA 2'-phospho-ADPR intermediate to expel the RNA 2'-OH and generate ADP-ribose 1″-2″ cyclic phosphate. Tpt1 is an essential component of the fungal tRNA splicing pathway that generates a unique 2'-PO4, 3'-5' phosphodiester splice junction during tRNA ligation. The wide distribution of Tpt1 enzymes in taxa that have no fungal-type RNA ligase raises the prospect that Tpt1 might catalyze reactions other than RNA 2'-phosphate removal. A survey of Tpt1 enzymes from diverse sources reveals that whereas all of the Tpt1 enzymes are capable of NAD+-dependent conversion of an internal RNA 2'-PO4 to a 2'-OH (the canonical Tpt1 reaction), a subset of Tpt1 enzymes also catalyzed NAD+-dependent ADP-ribosylation of an RNA or DNA 5'-monophosphate terminus. Aeropyrum pernix Tpt1 (ApeTpt1) is particularly adept in this respect. One-step synthesis of a 5'-phospho-ADP-ribosylated cap structure by ApeTpt1 (with no subsequent 5'-phosphotransferase step) extends the repertoire of the Tpt1 enzyme family and the catalogue of ADP-ribosylation reactions involving nucleic acid acceptors.


Assuntos
Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Capuzes de RNA/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aeropyrum/enzimologia , Aeropyrum/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Teste de Complementação Genética , NAD/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Splicing de RNA , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Plant Physiol ; 217: 27-37, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28756992

RESUMO

Blue-light reception plays a pivotal role for algae to adapt to changing environmental conditions. In this review we summarize the current structural and mechanistic knowledge about flavin-dependent algal photoreceptors. We especially focus on the cryptochrome and aureochrome type photoreceptors in the context of their evolutionary divergence. Despite similar photochemical characteristics to orthologous photoreceptors from higher plants and animals the algal blue-light photoreceptors have developed a set of unique structural and mechanistic features that are summarized below.


Assuntos
Criptocromos/fisiologia , Diatomáceas/fisiologia , Fotorreceptores de Plantas/fisiologia , Evolução Biológica , Criptocromos/química , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Desoxirribodipirimidina Fotoliase/fisiologia , Diatomáceas/metabolismo , Estrutura Molecular , Fotorreceptores de Plantas/química
16.
Mol Microbiol ; 105(5): 777-793, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28628237

RESUMO

In response to a variety of environmental cues, prokaryotes can switch between a motile and a sessile, biofilm-forming mode of growth. The regulatory mechanisms and signaling pathways underlying this switch are largely unknown in archaea but involve small winged helix-turn-helix DNA-binding proteins of the archaea-specific Lrs14 family. Here, we study the Lrs14 member AbfR1 of Sulfolobus acidocaldarius. Small-angle X-ray scattering data are presented, which are consistent with a model of dimeric AbfR1 in which dimerization occurs via an antiparallel coiled coil as suggested by homology modeling. Furthermore, solution structure data of AbfR1-DNA complexes suggest that upon binding DNA, AbfR1 induces deformations in the DNA. The wing residues tyrosine 84 and serine 87, which are phosphorylated in vivo, are crucial to establish stable protein-DNA contacts and their substitution with a negatively charged glutamate or aspartate residue inhibits formation of a nucleoprotein complex. Furthermore, mutation abrogates the cellular abundance and transcription regulatory function of AbfR1 and thus affects the resulting biofilm and motility phenotype of S. acidocaldarius. This work establishes a novel wHTH DNA-binding mode for Lrs14-like proteins and hints at an important role for protein phosphorylation as a signal transduction mechanism for the control of biofilm formation and motility in archaea.


Assuntos
Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica em Archaea/genética , Sequências Hélice-Volta-Hélice , Fosforilação , Elementos Estruturais de Proteínas , Sulfolobus/genética , Fatores de Transcrição/metabolismo
17.
Nucleic Acids Res ; 44(12): 5957-70, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179025

RESUMO

The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes' light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical 'aureo box', TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity.


Assuntos
DNA/química , Diatomáceas/genética , Transdução de Sinal Luminoso , Fotorreceptores de Plantas/química , Regulação Alostérica , Sítios de Ligação , Ritmo Circadiano/genética , DNA/genética , DNA/metabolismo , Diatomáceas/metabolismo , Diatomáceas/efeitos da radiação , Expressão Gênica , Cinética , Luz , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Termodinâmica
18.
Mol Microbiol ; 99(4): 674-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26508112

RESUMO

The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Flagelos/fisiologia , Nucleotídeos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/fisiologia , Cristalização , Cristalografia por Raios X , Flagelina/metabolismo , Genes Arqueais , Microscopia Eletrônica , Modelos Moleculares , Movimento , Sulfolobus acidocaldarius/genética
19.
Structure ; 24(1): 171-178, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26688213

RESUMO

Light-oxygen-voltage (LOV) domains absorb blue light for mediating various biological responses in all three domains of life. Aureochromes from stramenopile algae represent a subfamily of photoreceptors that differs by its inversed topology with a C-terminal LOV sensor and an N-terminal effector (basic region leucine zipper, bZIP) domain. We crystallized the LOV domain including its flanking helices, A'α and Jα, of aureochrome 1a from Phaeodactylum tricornutum in the dark state and solved the structure at 2.8 Å resolution. Both flanking helices contribute to the interface of the native-like dimer. Small-angle X-ray scattering shows light-induced conformational changes limited to the dimeric envelope as well as increased flexibility in the lit state for the flanking helices. These rearrangements are considered to be crucial for the formation of the light-activated dimer. Finally, the LOV domain of the class 2 aureochrome PtAUREO2 was shown to lack a chromophore because of steric hindrance caused by M301.


Assuntos
Diatomáceas/química , Fotorreceptores de Plantas/química , Sequência de Aminoácidos , Zíper de Leucina , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Subunidades Proteicas/química
20.
Structure ; 23(5): 863-872, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25865246

RESUMO

Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand ß-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Glicoproteínas de Membrana/metabolismo , Sulfolobus acidocaldarius/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Sequência Conservada , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Sulfolobus acidocaldarius/química , Sulfolobus acidocaldarius/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA