Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003401

RESUMO

Urban environments are afflicted by mixtures of anthropogenic volatile organic compounds (VOCs). VOC sources that drive human exposure include vehicle exhaust, industrial emissions, and oil spillage. The highly volatile VOC benzene has been linked to adverse health outcomes. However, few studies have focused on the later-in-life effects of low-level benzene exposure during the susceptible window of early development. Transcriptomic responses during embryogenesis have potential long-term consequences at levels equal to or lower than 1 ppm, therefore justifying the analysis of adult zebrafish that were exposed during early development. Previously, we identified transcriptomic alteration following controlled VOC exposures to 0.1 or 1 ppm benzene during the first five days of embryogenesis using a zebrafish model. In this study, we evaluated the adult-onset transcriptomic responses to this low-level benzene embryogenesis exposure (n = 20/treatment). We identified key genes, including col1a2 and evi5b, that were differentially expressed in adult zebrafish in both concentrations. Some DEGs overlapped at the larval and adult stages, specifically nfkbiaa, mecr, and reep1. The observed transcriptomic results suggest dose- and sex-dependent changes, with the highest impact of benzene exposure to be on cancer outcomes, endocrine system disorders, reproductive success, neurodevelopment, neurological disease, and associated pathways. Due to molecular pathways being highly conserved between zebrafish and mammals, developmentally exposed adult zebrafish transcriptomics is an important endpoint for providing insight into the long term-effects of VOCs on human health and disease.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Animais , Adulto , Humanos , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/efeitos adversos , Peixe-Zebra/genética , Benzeno/toxicidade , Transcriptoma , Mamíferos
2.
Environ Sci Pollut Res Int ; 29(32): 48620-48637, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35199268

RESUMO

The present study evaluates the performance of an indigenously developed ceramic ultrafiltration (UF) membrane in a lab-scale membrane bioreactor (MBR) process to treat real tannery effluent with varying organic loading (1500-6000 mg/L). UF membrane was prepared by the coating of bentonite clay on tubular clay-alumina macroporous support. The membrane surface was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET adsorption-desorption, contact angle measurement, and atomic force microscopy. In the side-stream MBR process, sewage sludge from a local sewage treatment plant was used as an activated sludge source with a constant sludge retention time of 30 days. Membrane filtration was performed in cross-flow mode using a single-channel membrane module. Artificial neural network (ANN) modeling tool was used to analyze the influence of various independent input variables, namely, the hydraulic retention time (4-10 h), mixed liquor suspended solid (MLSS) concentration (2-8 g/L), and influent COD concentration (1500-6000 mg/L) on COD removal (%) with feed-forward backpropagation method. Membrane study was done at a transmembrane pressure of 4.3 bar and feed flow rate of 7.5 L/min to observe the flux declination and fouling of the UF membrane with time. Average COD and BOD concentrations obtained in the treated effluent were 147.56 and 31 mg/L, respectively, and chromium concentration was < 0.1 mg/L; thus, treated effluent quality was found to be suitable for industrial recycling purposes apart from the safe environmental discharge. An in-depth study was undertaken to understand the removal mechanism in the MBR process, nature and extent of membrane fouling, changes in the morphology of the UF membrane, surface wettability, and surface topology by detailed surface characterization of the membrane pre- and post-filtration.


Assuntos
Ultrafiltração , Purificação da Água , Reatores Biológicos , Cerâmica , Argila , Membranas Artificiais , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA