Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
bioRxiv ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39282339

RESUMO

Morphogenesis of developing tissues results from anisotropic growth, typically driven by polarized patterns of gene expression. Here we propose an alternative model of anisotropic growth driven by self-organized feed-back between cell polarity, mechanical pressure, and cell division rates. Specifically, cell polarity alignment can induce spontaneous symmetry breaking in proliferation, resulting from the anisotropic distribution of mechanical pressure in the tissue. We show that proliferation anisotropy can be controlled by cellular elasticity, motility and contact inhibition, thereby elucidating the design principles for anisotropic morphogenesis.

2.
Curr Biol ; 34(14): 3201-3214.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991614

RESUMO

The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.


Assuntos
Actomiosina , Caenorhabditis elegans , Citocinese , Citocinese/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Actomiosina/metabolismo , Fenômenos Biomecânicos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Retroalimentação Fisiológica , Proteína rhoA de Ligação ao GTP/metabolismo , Embrião não Mamífero/fisiologia
3.
Cytoskeleton (Hoboken) ; 81(8): 409-419, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775207

RESUMO

Growth and turnover of actin filaments play a crucial role in the construction and maintenance of actin networks within cells. Actin filament growth occurs within limited space and finite subunit resources in the actin cortex. To understand how filament growth shapes the emergent architecture of actin networks, we developed a minimal agent-based model coupling filament mechanics and growth in a limiting subunit pool. We find that rapid filament growth induces kinetic trapping of highly bent actin filaments. Such collective bending patterns are long-lived, organized around nematic defects, and arise from competition between filament polymerization and bending elasticity. The stability of nematic defects and the extent of kinetic trapping are amplified by an increase in the abundance of the actin pool and by crosslinking the network. These findings suggest that kinetic trapping is a robust consequence of growth in crowded environments, providing a route to program shape memory in actin networks.


Assuntos
Citoesqueleto de Actina , Citoesqueleto de Actina/metabolismo , Cinética , Actinas/metabolismo , Citoesqueleto/metabolismo , Animais , Modelos Biológicos
4.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766065

RESUMO

Biomolecular condensates play pivotal roles in many cellular processes, yet predicting condensate growth dynamics within the complex intracellular environment is challenging. While chromatin mechanics are known to influence condensate coarsening in the nucleus, the effect of condensate properties remains unclear. Our study demonstrates that the interplay between condensate properties and chromatin mechanics dictates condensate growth dynamics. Through chemical dimerization, we induced condensates of various properties in the cell nuclei, revealing distinct growth mechanisms: diffusion-driven or ripening-dominated. To explain experimental observations, we developed a quantitative theory that uncovers the role of chromatin in modulating condensate growth via size-dependent pressure. We find that surface tension is a critical factor in determining whether condensates undergo elastic or Ostwald ripening. Our model predicts that different condensates are affected differently by chromatin heterogeneity, validated by experimentally perturbing chromatin organization. Taken together, our work elucidates how condensate surface tension and chromatin heterogeneity govern nuclear condensate ripening.

5.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806218

RESUMO

Cell size regulation has been extensively studied in symmetrically dividing cells, but the mechanisms underlying the control of size asymmetry in asymmetrically dividing bacteria remain elusive. Here, we examine the control of asymmetric division in Caulobacter crescentus, a bacterium that produces daughter cells with distinct fates and morphologies upon division. Through comprehensive analysis of multi-generational growth and shape data, we uncover a tightly regulated cell size partitioning mechanism. We find that errors in division site positioning are promptly corrected early in the division cycle through differential growth. Our analysis reveals a negative feedback between the size of daughter cell compartments and their growth rates, wherein the larger compartment grows slower to achieve a homeostatic size partitioning ratio at division. To explain these observations, we propose a mechanistic model of differential growth, in which equal amounts of growth regulators are partitioned into daughter cell compartments of unequal sizes and maintained over time via size-independent synthesis.


Assuntos
Caulobacter crescentus , Divisão Celular , Caulobacter crescentus/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/crescimento & desenvolvimento , Caulobacter crescentus/fisiologia , Divisão Celular Assimétrica , Proteínas de Bactérias/metabolismo , Modelos Biológicos
6.
Biophys J ; 123(7): 909-919, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38449309

RESUMO

Cell proliferation plays a crucial role in regulating tissue homeostasis and development. However, our understanding of how cell proliferation is controlled in densely packed tissues is limited. Here we develop a computational framework to predict the patterns of cell proliferation in growing epithelial tissues, connecting single-cell behaviors and cell-cell interactions to tissue-level growth. Our model incorporates probabilistic rules governing cell growth, division, and elimination, also taking into account their feedback with tissue mechanics. In particular, cell growth is suppressed and apoptosis is enhanced in regions of high cell density. With these rules and model parameters calibrated using experimental data for epithelial monolayers, we predict how tissue confinement influences cell size and proliferation dynamics and how single-cell physical properties influence the spatiotemporal patterns of tissue growth. In this model, mechanical feedback between tissue confinement and cell growth leads to enhanced cell proliferation at tissue boundaries, whereas cell growth in the bulk is arrested, recapitulating experimental observations in epithelial tissues. By tuning cellular elasticity and contact inhibition of proliferation we can regulate the emergent patterns of cell proliferation, ranging from uniform growth at low contact inhibition to localized growth at higher contact inhibition. We show that the cell size threshold at G1/S transition governs the homeostatic cell density and tissue turnover rate, whereas the mechanical state of the tissue governs the dynamics of tissue growth. In particular, we find that the cellular parameters affecting tissue pressure play a significant role in determining the overall growth rate. Our computational study thus underscores the impact of cell mechanical properties on the spatiotemporal patterns of cell proliferation in growing epithelial tissues.


Assuntos
Comunicação Celular , Células Epiteliais , Proliferação de Células , Epitélio , Ciclo Celular
7.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328084

RESUMO

To optimize their fitness, cells face the crucial task of efficiently responding to various stresses. This necessitates striking a balance between conserving resources for survival and allocating resources for growth and division. The fundamental principles governing these tradeoffs is an outstanding challenge in the physics of living systems. In this study, we introduce a coarse-grained theoretical framework for bacterial physiology that establishes a connection between the physiological state of cells and their survival outcomes in dynamic environments, particularly in the context of antibiotic exposure. Predicting bacterial survival responses to varying antibiotic doses proves challenging due to the profound influence of the physiological state on critical parameters, such as the Minimum Inhibitory Concentration (MIC) and killing rates, even within an isogenic cell population. Our proposed theoretical model bridges the gap by linking extracellular antibiotic concentration and nutrient quality to intracellular damage accumulation and gene expression. This framework allows us to predict and explain the control of cellular growth rate, death rate, MIC and survival fraction in a wide range of time-varying environments. Surprisingly, our model reveals that cell death is rarely due to antibiotic levels being above the maximum physiological limit, but instead survival is limited by the inability to alter gene expression sufficiently quickly to transition to a less susceptible physiological state. Moreover, bacteria tend to overexpress stress response genes at the expense of reduced growth, conferring greater protection against further antibiotic exposure. This strategy is in contrast to those employed in different nutrient environments, in which bacteria allocate resources to maximize growth rate. This highlights an important tradeoff between the cellular capacity for growth and the ability to survive antibiotic exposure.

8.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260684

RESUMO

Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.

9.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260433

RESUMO

Growth and turnover of actin filaments play a crucial role in the construction and maintenance of actin networks within cells. Actin filament growth occurs within limited space and finite subunit resources in the actin cortex. To understand how filament growth shapes the emergent architecture of actin networks, we developed a minimal agent-based model coupling filament mechanics and growth in a limiting subunit pool. We find that rapid filament growth induces kinetic trapping of highly bent actin filaments. Such collective bending patterns are long-lived, organized around nematic defects, and arises from competition between filament polymerization and bending elasticity. The stability of nematic defects and the extent of kinetic trapping are amplified by an increase in the abundance of the actin pool and by crosslinking the network. These findings suggest that kinetic trapping is a robust consequence of growth in crowded environments, providing a route to program shape memory in actin networks.

10.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38076901

RESUMO

Contractile force generation by the cortical actomyosin cytoskeleton is essential for a multitude of biological processes. The actomyosin cortex behaves as an active material that drives local and large-scale shape changes via cytoskeletal remodeling in response to biochemical cues and feedback loops. Cytokinesis is the essential cell division event during which a cortical actomyosin ring generates contractile force to change cell shape and separate two daughter cells. Our recent work with active gel theory predicts that actomyosin systems under the control of a biochemical oscillator and experiencing mechanical strain will exhibit complex spatiotemporal behavior, but cytokinetic contractility was thought to be kinetically simple. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we used 4-dimensional imaging with unprecedented temporal resolution and discovered sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Quantification of ingression speed oscillations revealed wide ranges of oscillation period and amplitude. In the cytokinetic ring, activity of the master regulator RhoA pulsed with a timescale of approximately 20 seconds, shorter than that reported for any other biological context. Contractility oscillated with 20-second periodicity and with much longer periods. A combination of in vivo and in silico approaches to modify mechanical feedback revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Effective local ring ingression is characterized by slower speed oscillations, likely due to increased local stresses and therefore mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico . We propose that downstream of initiation by pulsed RhoA activity, mechanical positive feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and therefore makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Our work demonstrates that while biochemical feedback loops afford systems responsiveness and robustness, mechanical feedback must also be considered to describe and understand the behaviors of active materials in vivo .

11.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546964

RESUMO

Cell proliferation plays a crucial role in regulating tissue homeostasis and development. However, our understanding of how cell proliferation is controlled in densely packed tissues is limited. Here we develop a computational framework to predict the patterns of cell proliferation in growing tissues, connecting single-cell behaviors and cell-cell interactions to tissue-level growth. Our model incorporates probabilistic rules governing cell growth, division, and elimination, while also taking into account their feedback with tissue mechanics. In particular, cell growth is suppressed and apoptosis is enhanced in regions of high cell density. With these rules and model parameters calibrated using experimental data, we predict how tissue confinement influences cell size and proliferation dynamics, and how single-cell physical properties influence the spatiotemporal patterns of tissue growth. Our findings indicate that mechanical feedback between tissue confinement and cell growth leads to enhanced cell proliferation at tissue boundaries, whereas cell growth in the bulk is arrested. By tuning cellular elasticity and contact inhibition of proliferation we can regulate the emergent patterns of cell proliferation, ranging from uniform growth at low contact inhibition to localized growth at higher contact inhibition. Furthermore, mechanical state of the tissue governs the dynamics of tissue growth, with cellular parameters affecting tissue pressure playing a significant role in determining the overall growth rate. Our computational study thus underscores the impact of cell mechanical properties on the spatiotemporal patterns of cell proliferation in growing tissues.

12.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37333186

RESUMO

Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental work suggest a centrosome growth model involving autocatalytic assembly of the pericentriolic material. Here we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.

13.
Commun Biol ; 6(1): 486, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147517

RESUMO

Bacteria dynamically regulate cell size and growth to thrive in changing environments. While previous studies have characterized bacterial growth physiology at steady-state, a quantitative understanding of bacterial physiology in time-varying environments is lacking. Here we develop a quantitative theory connecting bacterial growth and division rates to proteome allocation in time-varying nutrient environments. In such environments, cell size and growth are regulated by trade-offs between prioritization of biomass accumulation or division, resulting in decoupling of single-cell growth rate from population growth rate. Specifically, bacteria transiently prioritize biomass accumulation over production of division machinery during nutrient upshifts, while prioritizing division over growth during downshifts. When subjected to pulsatile nutrient concentration, we find that bacteria exhibit a transient memory of previous metabolic states due to the slow dynamics of proteome reallocation. This allows for faster adaptation to previously seen environments and results in division control which is dependent on the time-profile of fluctuations.


Assuntos
Bactérias , Proteoma , Bactérias/genética , Adaptação Fisiológica , Nutrientes , Tamanho Celular
15.
Commun Biol ; 6(1): 325, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973388

RESUMO

The accumulation and transmission of mechanical stresses in the cell cortex and membrane determines the mechanics of cell shape and coordinates essential physical behaviors, from cell polarization to cell migration. However, the extent that the membrane and cytoskeleton each contribute to the transmission of mechanical stresses to coordinate diverse behaviors is unclear. Here, we reconstitute a minimal model of the actomyosin cortex within liposomes that adheres, spreads and ultimately ruptures on a surface. During spreading, accumulated adhesion-induced (passive) stresses within the membrane drive changes in the spatial assembly of actin. By contrast, during rupture, accumulated myosin-induced (active) stresses within the cortex determine the rate of pore opening. Thus, in the same system, devoid of biochemical regulation, the membrane and cortex can each play a passive or active role in the generation and transmission of mechanical stress, and their relative roles drive diverse biomimetic physical behaviors.


Assuntos
Actinas , Biomimética , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Citoesqueleto/metabolismo
16.
Biophys J ; 122(7): 1254-1267, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814380

RESUMO

Proliferating bacterial cells exhibit stochastic growth and size dynamics, but the regulation of noise in bacterial growth and morphogenesis remains poorly understood. A quantitative understanding of morphogenetic noise control, and how it changes under different growth conditions, would provide better insights into cell-to-cell variability and intergenerational fluctuations in cell physiology. Using multigenerational growth and width data of single Escherichia coli and Caulobacter crescentus cells, we deduce the equations governing growth and size dynamics of rod-like bacterial cells. Interestingly, we find that both E. coli and C. crescentus cells deviate from exponential growth within the cell cycle. In particular, the exponential growth rate increases during the cell cycle irrespective of nutrient or temperature conditions. We propose a mechanistic model that explains the emergence of super-exponential growth from autocatalytic production of ribosomes coupled to the rate of cell elongation and surface area synthesis. Using this new model and statistical inference on large datasets, we construct the Langevin equations governing cell growth and size dynamics of E. coli cells in different nutrient conditions. The single-cell level model predicts how noise in intragenerational and intergenerational processes regulate variability in cell morphology and generation times, revealing quantitative strategies for cellular resource allocation and morphogenetic noise control in different growth conditions.


Assuntos
Caulobacter crescentus , Escherichia coli , Modelos Biológicos , Divisão Celular , Ciclo Celular , Caulobacter crescentus/fisiologia
18.
Soft Matter ; 18(40): 7877-7886, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205535

RESUMO

Coordinated and cooperative motion of cells is essential for embryonic development, tissue morphogenesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical behaviors in collective cell motion is challenging due to the complex interplay between cell-cell interactions, cell-matrix adhesions and active cell behaviors. To overcome this challenge, we develop a predictive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue mechanics and active cell properties on the movement of cell collectives. We apply the model to the specific case of collective motion in cell aggregates as they spread into a two-dimensional cell monolayer adherent to a soft elastic matrix. Consistent with recent experiments, we find that substrate stiffness regulates the driving forces for the spreading of cellular monolayer, which can be pressure-driven or crawling-based depending on substrate rigidity. On soft substrates, cell monolayer spreading is driven by an active pressure due to the influx of cells coming from the aggregate, whereas on stiff substrates, cell spreading is driven primarily by active crawling forces. Our model predicts that cooperation of cell crawling and tissue pressure drives faster spreading, while the spreading rate is sensitive to the mechanical properties of the tissue. We find that solid tissues spread faster on stiff substrates, with spreading rate increasing with tissue tension. By contrast, the spreading of fluid tissues is independent of substrate stiffness and is slower than solid tissues. We compare our theoretical results with experimental results on traction force generation and spreading kinetics of cell monolayers, and provide new predictions on the role of tissue fluidity and substrate rigidity on collective cell motion.


Assuntos
Comunicação Celular , Fenômenos Mecânicos , Cinética , Movimento Celular/fisiologia , Adesão Celular
19.
Biochem Soc Trans ; 50(5): 1269-1279, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36093840

RESUMO

Characterizing the physiological response of bacterial cells to antibiotic treatment is crucial for the design of antibacterial therapies and for understanding the mechanisms of antibiotic resistance. While the effects of antibiotics are commonly characterized by their minimum inhibitory concentrations or the minimum bactericidal concentrations, the effects of antibiotics on cell morphology and physiology are less well characterized. Recent technological advances in single-cell studies of bacterial physiology have revealed how different antibiotic drugs affect the physiological state of the cell, including growth rate, cell size and shape, and macromolecular composition. Here, we review recent quantitative studies on bacterial physiology that characterize the effects of antibiotics on bacterial cell morphology and physiological parameters. In particular, we present quantitative data on how different antibiotic targets modulate cellular shape metrics including surface area, volume, surface-to-volume ratio, and the aspect ratio. Using recently developed quantitative models, we relate cell shape changes to alterations in the physiological state of the cell, characterized by changes in the rates of cell growth, protein synthesis and proteome composition. Our analysis suggests that antibiotics induce distinct morphological changes depending on their cellular targets, which may have important implications for the regulation of cellular fitness under stress.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteoma/metabolismo , Farmacorresistência Bacteriana
20.
PLoS Comput Biol ; 18(6): e1010253, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714135

RESUMO

How cells regulate the size of intracellular structures and organelles is a longstanding question. Recent experiments suggest that size control of intracellular structures is achieved through the depletion of a limiting subunit pool in the cytoplasm. While the limiting pool model ensures organelle-to-cell size scaling, it does not provide a mechanism for robust size control of multiple co-existing structures. Here we develop a generalized theory for size-dependent growth of intracellular structures to demonstrate that robust size control of multiple intracellular structures, competing for a limiting subunit pool, is achieved via a negative feedback between the growth rate and the size of the individual structure. This design principle captures size maintenance of a wide variety of subcellular structures, from cytoskeletal filaments to three-dimensional organelles. We identify the feedback motifs for structure size regulation based on known molecular processes, and compare our theory to existing models of size regulation in biological assemblies. Furthermore, we show that positive feedback between structure size and growth rate can lead to bistable size distribution and spontaneous size selection.


Assuntos
Citoesqueleto , Organelas , Tamanho Celular , Citoplasma , Organelas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA