Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Asian J ; 19(4): e202300997, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38270228

RESUMO

The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.

2.
Chem Asian J ; 18(14): e202300321, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37243435

RESUMO

The great success of asymmetric organocatalysis has made it one of the most important advancements made in chemistry in the past two decades. A significant achievement in this context is the asymmetric organocatalysis of the thiocyanation reaction. In the current study, computational studies with density functional theory have been done in order to understand an interesting experimental finding: the reversal of enantioselectivity from R to S when the electrophile is changed from ß-keto ester to oxindole for the thiocyanation reaction with the cinchona alkaloid complex catalyst. The calculations reveal an unusual fact - the principal reason for the reversal is the presence of the C-H⋅⋅⋅S noncovalent interaction, which is present only in the major transition states in each of the two nucleophile cases. Only recently has it been realized that the supposedly weak C-H⋅⋅⋅S noncovalent interaction has the properties of a hydrogen bond, and the fact that this interaction is the cause of enantioselectivity has relevance, because of the large number of asymmetric transformations involving the sulphur heteroatom.

3.
Chem Commun (Camb) ; 59(16): 2255-2258, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36748261

RESUMO

This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.

4.
J Org Chem ; 87(21): 13583-13597, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36181673

RESUMO

Highly chemo- and regio-selective C-H bond functionalization of unactivated arenes with propargyl α-aryl-α-diazoacetates has been developed using scandium catalysis. A variety of unactivated, mildly deactivated, and electronically activated arenes have been functionalized using this protocol. The synergistic combination of scandium triflate as a catalyst and propargyl α-aryl-α-diazoacetate as a reagent played a pivotal role in the effective C-H bond functionalization of arenes without the assistance of any directing group or ligand. The practicality of the protocol has been demonstrated by the gram-scale synthesis of very useful α,α-diarylacetates including antispasmodic drug-adiphenine. Based on the experimental observations, labeling experiment, and density functional theory calculations, a plausible reaction mechanism has been outlined.

5.
Angew Chem Int Ed Engl ; 57(20): 5735-5739, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29573526

RESUMO

Reported is the first organocatalytic asymmetric 1,3-alkyl shift in alkyl aryl ethers for the synthesis of chiral 3,3'-diaryloxindoles using a chiral Brønsted acid catalyst. Preliminary results showed that each enantiomer of the 3,3'-diaryloxindole, and a racemic mixture, showed different antiproliferative activities against HeLa cell lines by using an MTT assay.


Assuntos
Éteres/química , Oxindóis/síntese química , Ácidos Fosfóricos/química , Catálise , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Oxindóis/química , Oxindóis/farmacologia , Estereoisomerismo
6.
Chem Commun (Camb) ; 53(32): 4461-4464, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28379229

RESUMO

A visible light active porphyrin-based porous organic polymer having high chemical stability and surface area has been synthesized and its ability to influence the photocatalytic activity of large band gap-TiO2 nanoparticles has been tested. The resultant composite shows improved photocatalytic activity as compared to the parent precursors. This study provides insights into the photosensitizing ability of the polymer in addition to its ability to firmly harbor nanoparticles onto its surface.

7.
Chem Commun (Camb) ; 53(26): 3705-3708, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28295109

RESUMO

The remarkable effect of anions on the transition from supramolecular gels to crystalline phases has been described. An amino acid-based metallohydrogel was transformed into different metal-organic frameworks through the selective picking of anions. The metallohydrogel and the resulting metal-organic frameworks (MOFs) were thoroughly characterized. The results demonstrated controlled access over the binding of a particular anion to selectively form a particular MOF.

8.
Angew Chem Int Ed Engl ; 56(8): 2123-2126, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28097801

RESUMO

Amine-linked (C-NH) porous organic cages (POCs) are preferred over the imine-linked (C=N) POCs owing to their enhanced chemical stability. In general, amine-linked cages, obtained by the reduction of corresponding imines, are not shape-persistent in the crystalline form. Moreover, they require multistep synthesis. Herein, a one-pot synthesis of four new amine-linked organic cages by the reaction of 1,3,5-triformylphloroglucinol (Tp) with different analogues of alkanediamine is reported. The POCs resulting from the odd diamine (having an odd number of -CH2 groups) is conformationally eclipsed, while the POCs constructed from even diamines adopt a gauche conformation. This odd-even alternation in the conformation of POCs has been supported by computational calculations. The synthetic strategy hinges on the concept of Schiff base condensation reaction followed by keto-enol tautomerization. This mechanism is the key for the exceptional chemical stability of cages and facilitates their resistance towards acids and bases.

9.
Chem Commun (Camb) ; 53(1): 196-199, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27917422

RESUMO

A Pt-catalyzed, highly regioselective reaction between N-allenamides and imino-alkynes leading to pyrrolo[1,2-a]indoles is described. This represents the first example of [3+2]-annulation of Pt-bound azomethine ylides with the distal C[double bond, length as m-dash]C bond of N-allenamides. The mechanism of the reaction was established by computational studies.

10.
J Phys Chem B ; 120(17): 4034-46, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27090068

RESUMO

Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.


Assuntos
Nitrilas/química , Peptídeos/química , Proteínas/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
11.
Angew Chem Int Ed Engl ; 55(27): 7806-10, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-26953562

RESUMO

Two new chemically stable triazine- and phenyl-core-based crystalline porous polymers (CPPs) have been synthesized using a single-step template-free solvothermal route. Unique morphological diversities were observed for these CPPs [2,3-DhaTta (ribbon) and 2,3-DhaTab (hollow sphere)] by simply altering the linker planarity. A detailed time-dependent study established a significant correlation between the molecular level structures of building blocks with the morphology of CPPs. Moreover, a DFT study was done for calculating the interlayer stacking energy, which revealed that the extent of stacking efficiency is responsible for governing the morphological diversity in these CPPs.

12.
J Am Chem Soc ; 138(8): 2823-8, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26866697

RESUMO

Covalent organic nanosheets (CONs) have emerged as functional two-dimensional materials for versatile applications. Although π-π stacking between layers, hydrolytic instability, possible restacking prevents their exfoliation on to few thin layered CONs from crystalline porous polymers. We anticipated rational designing of a structure by intrinsic ionic linker could be the solution to produce self-exfoliated CONs without external stimuli. In an attempt to address this issue, we have synthesized three self-exfoliated guanidinium halide based ionic covalent organic nanosheets (iCONs) with antimicrobial property. Self-exfoliation phenomenon has been supported by molecular dynamics (MD) simulation as well. Intrinsic ionic guanidinium unit plays the pivotal role for both self-exfoliation and antibacterial property against both Gram-positive and Gram-negative bacteria. Using such iCONs, we have devised a mixed matrix membrane which could be useful for antimicrobial coatings with plausible medical benefits.


Assuntos
Anti-Infecciosos/química , Guanidina/química , Nanoestruturas/química , Modelos Moleculares , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA