Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 13130-13140, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709625

RESUMO

In recent years, substantial attention has been directed toward energy-harvesting systems that exploit sunlight energy and water resources. Intensive research efforts are underway to develop energy generation methodologies through interactions with water using various materials. In the present investigation, we synthesized sodium vanadium oxide (SVO) nanorods with n-type semiconductor characteristics. These nanorods facilitate the initiation of capillary phenomena within nanochannels, thereby enhancing the interfacial area between nanomaterials and ions. The open-circuit voltage (VOC) was 0.8 V, and the short-circuit current (ISC) was 30 µA, which were continuously monitored at room temperature using a 0.1 M saltwater solution. Additionally, we achieved enhanced energy generation by efficiently converting light energy into thermal energy using MXene, a 2D material. This was accomplished through the photothermal effect, leveraging the inherent semiconductor characteristics. Under light exposure, the system exhibited improved performance attributed to heightened ion diffusion and increased conductivity. This phenomenon was a result of the concerted synergy between ions and electrons facilitated by a semiconductor nanofluidic channel. Ultimately, we demonstrated an application to showcase real-world viability. In this scenario, electricity was harvested through a smart buoy floating on the water, and, based on this, data from the surrounding environment was sensed and wirelessly transmitted.

2.
Nat Mater ; 23(6): 834-843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532072

RESUMO

Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.

3.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37857269

RESUMO

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

4.
Chem Rev ; 123(16): 9982-10078, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37542724

RESUMO

Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica
5.
Small ; 18(37): e2202841, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901286

RESUMO

Owing to its low mechanical compliance, liquid metal is intrinsically suitable for stretchable electronics and future wearable devices. However, its invariable strain-resistance behavior according to the strain-induced geometrical deformation and the difficulty of circuit patterning limit the extensive use of liquid metal, especially for strain-insensitive wiring purposes. To overcome these limitations, herein, novel liquid-metal-based electrodes of fragmented eutectic gallium-indium alloy (EGaIn) and Ag nanowire (NW) backbone of which their entanglement is controlled by the laser-induced photothermal reaction to enable immediate and direct patterning of the stretchable electrode with spatially programmed strain-resistance characteristics are developed. The coexistence of fragmented EGaIn and AgNW backbone, that is, a biphasic metallic composite (BMC), primarily supports the uniform and durable formation of target layers on stretchable substrates. The laser-induced photothermal reaction not only promotes the adhesion between the BMC layer and substrates but also alters the structure of laser-irradiated BMC. By controlling the degree of entanglement between fragmented EGaIn and AgNW, the initial conductivity and local gauge factor are regulated and the electrode becomes effectively insensitive to applied strain. As the configuration developed in this study is compatible with both regimes of electrodes, it can open new routes for the rapid creation of complex stretchable circuitry through a single process.

6.
Sci Adv ; 8(23): eabo3209, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675404

RESUMO

The patterning of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels with excellent electrical property and spatial resolution is a challenge for bioelectronic applications. However, most PEDOT:PSS hydrogels are fabricated by conventional manufacturing processes such as photolithography, inkjet printing, and screen printing with complex fabrication steps or low spatial resolution. Moreover, the additives used for fabricating PEDOT:PSS hydrogels are mostly cytotoxic, thus requiring days of detoxification. Here, we developed a previously unexplored ultrafast and biocompatible digital patterning process for PEDOT:PSS hydrogel via phase separation induced by a laser. We enhanced the electrical properties and aqueous stability of PEDOT:PSS by selective laser scanning, which allowed the transformation of PEDOT:PSS into water-stable hydrogels. PEDOT:PSS hydrogels showed high electrical conductivity of 670 S/cm with 6-µm resolution in water. Furthermore, electrochemical properties were maintained even after 6 months in a physiological environment. We further demonstrated stable neural signal recording and stimulation with hydrogel electrodes fabricated by laser.

7.
Nanomicro Lett ; 14(1): 49, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076794

RESUMO

Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning. However, the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure. The ideal electronics should not have defective interfaces of dissimilar materials. In this study, we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox (rSLIR) method. Furthermore, rSLIR can control the oxidation state of transition metal (Cu) to yield semiconductors with two different bandgap states (Cu2O and CuO with bandgaps of 2.1 and 1.2 eV, respectively), which may allow multifunctional sensors with multiple bandgaps from the same materials. This novel method enables the seamless integration of single-phase Cu, Cu2O, and CuO, simultaneously while allowing reversible, selective conversion between oxidation states by simply shining laser light. Moreover, we fabricated a flexible monolithic metal-semiconductor-metal multispectral photodetector that can detect multiple wavelengths. The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.

8.
Nano Lett ; 22(1): 524-532, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665632

RESUMO

The worldwide proliferation of COVID-19 poses the urgent need for sterilizable and transparent air filters to inhibit virus transmission while retaining ease of communication. Here, we introduce copper nanowires to fabricate transparent and self-sterilizable air filters. Copper nanowire air filter (CNAF) allowed visible light penetration, thereby can exhibit facial expressions, helpful for better communication. CNAF effectively captured particulate matter (PM) by mechanical and electrostatic filtration mechanisms. The temperature of CNAF could be controlled by Joule-heating up to 100 °C with thermal stability. CNAF successfully inhibited the growth of E. coli because of the oligodynamic effect of copper. With heat sterilization, the antibacterial efficiency against G. anodireducens was greatly improved up to 99.3% within 10 min. CNAF showed high reusability with stable filtration efficiency and thermal antibacterial efficacy after five repeated uses. Our result suggests an alternative form of active antimicrobial air filter in preparation for the current and future pandemic situations.


Assuntos
Filtros de Ar , COVID-19 , Escherichia coli , Filtração , Humanos , SARS-CoV-2 , Esterilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA