Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(4)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36541536

RESUMO

We theoretically study the stationary-state vortex lattice configurations of rotating spin-orbit (SO)- and coherently-coupled spin-1 Bose-Einstein condensates (BECs) trapped in quasi-two-dimensional harmonic potentials. The combined effects of rotation, SO and coherent couplings are analyzed systematically from the single-particle perspective. Through the single-particle Hamiltonian, which is exactly solvable for one-dimensional coupling, we illustrate that a boson in these rotating SO- and coherently-coupled condensates are subjected to effective toroidal, symmetric double-well, or asymmetric double-well potentials under specific coupling and rotation strengths. In the presence of mean-field interactions, using the coupled Gross-Pitaevskii formalism at moderate to high rotation frequencies, the analytically obtained effective potential minima and the numerically obtained coarse-grained density maxima position are in excellent agreement. On rapid rotation, we further find that the spin-expectation per particle of an antiferromagnetic spin-1 BEC approaches unity indicating a similarity in the response with ferromagnetic SO-coupled condensates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA