Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 196: 106944, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284519

RESUMO

The review discusses the recurrence of Mycoplasma pneumoniae (M. pneumoniae), a bacterium causing atypical pneumonia, primarily affecting Europe and Asia due to climate change, immunity decline, antibiotic resistance, and genetic heterogeneity. The COVID-19 pandemic initially reduced M. pneumoniae cases due to preventative measures, but its reemergence suggests different transmission dynamics and exacerbates clinical severity with co-infections with other viruses. The pathogenicity of M. pneumoniae is attributed to its intracellular changes, toxin release, and adhesion processes, which can result in a variety of symptoms and problems. Antibiotics and immunomodulators are used in treatment, and attempts are being made to create vaccines. Effective management of its reappearance necessitates surveillance and preventative measures, especially in the context of co-infections and potential outbreaks. M. pneumoniae's resurgence highlights its reliance on a polarized cytoskeletal architecture for host cell attachment and pathogenicity through cytoadherence and cytotoxic agent synthesis. M. pneumoniae has returned even though the COVID-19 pandemic originally reduced incidence; this might be because of things like declining immunity and particular pathogenic characteristics. Meteorological factors like temperature and humidity, along with air quality, including pollutants like PM2.5 and NO2, increase susceptibility to environmental hazards. During the pandemic, non-pharmaceutical measures decreased transmission but did not eradicate the infection. Epidemics typically occur three to five years apart, emphasizing the need for ongoing study and observation. Antimicrobial resistance is a serious issue, necessitating caution and alternative therapies, especially in macrolides. COVID-19 pandemic lessons, such as mask use and hand hygiene, may help limit M. pneumoniae transmission.

2.
Mediators Inflamm ; 2024: 5830491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445291

RESUMO

Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Subtilisina , Pró-Proteína Convertase 9 , Receptor 4 Toll-Like , Lipoproteínas LDL , Células Endoteliais , Pró-Proteína Convertases , Lectinas , Receptores Depuradores Classe E
3.
Curr Microbiol ; 80(1): 38, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527519

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) lesions that can lead to severe neurological defects. Evidence is mounting that immune function is crucial in neuroinflammatory illnesses like MS. Through its impact on systemic immunological reactions, the large microbial population known as the gut microbiota has been linked to both human health and disease. The gut-brain axis (GBA) therefore encompasses neurological, immunological, and hormonal pathways, and microbiota can have a number of effects on the immune system, influencing MS. Recent research revealed a bidirectional relationship between metabolites originating from the gut microbiota, namely short-chain fatty acids (SCFAs). Intestinal epithelial cells are influenced by SCFAs, which also boosts the secretion of -Defensins and regenerating islet-derived III (REGIII) proteins. These proteins reduce intestinal pathogens, induce T-reg differentiation, and modulate immune responses by reducing IL-1 and IL-6 expression and increasing IL-10. Nutrition and psychological stress are two of the most significant elements that can directly and indirectly change the microbiota compositions along with other environmental influencing factors. An important regulator of intestinal physiology in the gut-brain-microbiota axis is butyrate, a well-known SCFA. Intestinal dysbiosis, altered intestinal barrier function, behavioral abnormalities, and activation of the hypothalamic-pituitary-adrenal (HPA) axis are all brought on by exposure. Probiotics, bacterial metabolite supplementation, fecal matter transplantation, defined microbial communities, and dietary intervention are some methods for modifying the composition of the gut microbiota that may be used to affect disease-related immune dysfunction and serve as the foundation for a new class of therapeutics.


Assuntos
Microbioma Gastrointestinal , Microbiota , Esclerose Múltipla , Humanos , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis , Trato Gastrointestinal , Sistema Nervoso Central
4.
Med Gas Res ; 12(2): 33-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34677149

RESUMO

Atmospheric ozone is produced when nitrogen oxides react with volatile organic compounds. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome contains a unique N-terminal fragment in the Spike protein, which allows it to bind to air pollutants in the environment. 'Our approach in this review is to study ozone and its effect on the SARS-CoV-2 virus and patients with coronavirus disease 2019 (COVID-19). Article data were collected from PubMed, Scopus, and Google Scholar databases. Ozone therapy has antiviral properties, improves blood flow, facilitates the transfer of oxygen in hypoxemic tissues, and reduces blood coagulation phenomena in COVID-19 patients. Ozone has immunomodulatory effects by modulating cytokines (reduction of interleukin-1, interleukin-6, tumor necrosis factor-α, and interleukin-10), induction of interferon-γ, anti-inflammatory properties by modulating NOD-, LRR- and pyrin domain-containing protein 3, inhibition of cytokine storm (blocking nuclear factor-κB and stimulating nuclear factor erythroid 2-related factor 2 pathway), stimulates cellular/humoral immunity/phagocytic function and blocks angiotensin-converting enzyme 2. In direct oxygen-ozone injection, oxygen reacts with several biological molecules such as thiol groups in albumin to form ozonoids. Intravenous injection of ozonated saline significantly increases the length of time a person can remain hypoxic. The rectal ozone protocol is rectal ozone insufflation, resulting in clinical improvement in oxygen saturation and biochemical improvement (fibrinogen, D-dimer, urea, ferritin, LDH, interleukin-6, and C-reactive protein). In general, many studies have shown the positive effect of ozone therapy as a complementary therapy in the recovery of COVID-19 patients. All the findings indicate that systemic ozone therapy is nontoxic and has no side effects in these patients.


Assuntos
COVID-19 , Ozônio , Síndrome da Liberação de Citocina , Humanos , Oxigênio , Ozônio/uso terapêutico , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA