Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Anim Ecol ; 93(1): 83-94, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984847

RESUMO

Many animals exhibit partial migration, which occurs when populations contain coexisting contingents of migratory and resident individuals. This individual-level variation in migration behaviour may drive differences in growth, age at maturity and survival. Therefore, partial migration is widely considered to play a key role in shaping population demography. Otolith chemistry and microstructural analysis were used to identify the environmental- and individual-specific factors that influence migratory behaviour in the facultatively catadromous barramundi (Lates calcarifer) at two distinct life history stages: firstly, as juveniles migrating upstream into fresh water; and secondly, as adults or sub-adults returning to the estuarine/marine spawning habitat. Monsoonal climate played an important role in determining the migration propensity of juveniles: individuals born in the driest year examined (weak monsoon) were more than twice as likely to undergo migration to freshwater than those born in the wettest (strong monsoon) year. In contrast, the ontogenetic timing of return migrations to the estuary by adults and sub-adults was highly variable and not strongly associated with the environmental parameters examined. We propose that scarce resources within saline natal habitats during lower rainfall years may provide an ecological incentive for juveniles to migrate upstream, whereas more abundant resources in higher rainfall years may promote resident life histories within estuaries. We conclude that inter-annual climatic variation, here evidenced by monsoonal strength, likely plays an important role in driving the persistence of diversified life histories within wild barramundi populations.


Assuntos
Peixes , Água Doce , Animais , Estações do Ano , Ecossistema , Estuários
2.
Heredity (Edinb) ; 130(5): 289-301, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016134

RESUMO

Genetic data can be highly informative for answering questions relevant to practical conservation efforts, but remain one of the most neglected aspects of species recovery plans. Framing genetic questions with reference to practical and tractable conservation objectives can help bypass this limitation of the application of genetics in conservation. Using a single-nucleotide polymorphism dataset from reduced-representation sequencing (DArTSeq), we conducted a genetic assessment of remnant populations of the endangered forty-spotted pardalote (Pardalotus quadragintus), a songbird endemic to Tasmania, Australia. Our objectives were to inform strategies for the conservation of genetic diversity in the species and estimate effective population sizes and patterns of inter-population movement to identify management units relevant to population conservation and habitat restoration. We show population genetic structure and identify two small populations on mainland Tasmania as 'satellites' of larger Bruny Island populations connected by migration. Our data identify management units for conservation objectives relating to genetic diversity and habitat restoration. Although our results do not indicate the immediate need to genetically manage populations, the small effective population sizes we estimated for some populations indicate that they are vulnerable to genetic drift, highlighting the urgent need to implement habitat restoration to increase population size and to conduct genetic monitoring. We discuss how our genetic assessment can be used to inform management interventions for the forty-spotted pardalote and show that by assessing contemporary genetic aspects, valuable information for conservation planning and decision-making can be produced to guide actions that account for genetic diversity and increase chances of recovery in species of conservation concern.


Assuntos
Espécies em Perigo de Extinção , Aves Canoras , Animais , Aves Canoras/genética , Deriva Genética , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Conservação dos Recursos Naturais , Variação Genética
3.
Ecol Evol ; 13(3): e9885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36937069

RESUMO

The advancement and availability of innovative animal biotelemetry and genomic technologies are improving our understanding of how the movements of individuals influence gene flow within and between populations and ultimately drive evolutionary and ecological processes. There is a growing body of work that is integrating what were once disparate fields of biology, and here, we reviewed the published literature up until January 2023 (139 papers) to better understand the drivers of this research and how it is improving our knowledge of animal biology. The review showed that the predominant drivers for this research were as follows: (1) understanding how individual-based movements affect animal populations, (2) analyzing the relationship between genetic relatedness and social structuring, and (3) studying how the landscape affects the flow of genes, and how this is impacted by environmental change. However, there was a divergence between taxa as to the most prevalent research aim and the methodologies applied. We also found that after 2010 there was an increase in studies that integrated the two data types using innovative statistical techniques instead of analyzing the data independently using traditional statistics from the respective fields. This new approach greatly improved our understanding of the link between the individual, the population, and the environment and is being used to better conserve and manage species. We discuss the challenges and limitations, as well as the potential for growth and diversification of this research approach. The paper provides a guide for researchers who wish to consider applying these disparate disciplines and advance the field.

4.
Heredity (Edinb) ; 130(5): 278-288, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36899176

RESUMO

Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.


Assuntos
Conservação dos Recursos Naturais , Metagenômica , Animais , Ratos , Austrália , Biodiversidade , Ecossistema
5.
Mol Ecol ; 31(21): 5468-5486, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056907

RESUMO

Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.


Assuntos
Marsupiais , Metagenômica , Animais , Bufo marinus/genética , Comportamento Predatório , Marsupiais/genética , Austrália/epidemiologia
6.
Ecol Evol ; 12(7): e9114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898424

RESUMO

The delineation of subspecies is important in the evaluation and protection of biodiversity. Subspecies delineation is hampered by inconsistently applied criteria and a lack of agreement and shifting standards on how a subspecies should be defined. The Australian endemic Yellow Chat (Epthianura crocea) is split into three subspecies (E. c. crocea, E. c. tunneyi, and E. c. macgregori) based on minor plumage differences and geographical isolation. Both E. c. tunneyi (Endangered) and E. c. macgregori (Critically Endangered) are recognized under Australian legislation as threatened and are the subject of significant conservation effort. We used mitochondrial DNA to evaluate the phylogeny of the Yellow Chat and determine how much genetic variation is present in each of the three subspecies. We found no significant difference in the cytochrome b sequences (833 base pairs) of E. c. crocea and E. c. tunneyi, but approximately 0.70% or 5.83 bp difference between E. c macgregori and both E. c. crocea and E. c. tunneyi. This analysis supports the delineation of E. c. macgregori as a valid subspecies but does not support separation of E. c. crocea from E. c. tunneyi. We also found very low levels of genetic variation within the Yellow Chat, suggesting it may be vulnerable to environmental change. Our results cast doubt upon the geographic isolation of E. c. crocea from E. c. tunneyi, but more advanced genetic sequencing and a robust comparison of plumage are needed to fully resolve taxonomy.

7.
J Fish Biol ; 101(3): 550-559, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35638470

RESUMO

Sex-specific reproductive roles contribute to sexual dimorphic morphological trait variations. In uniparental mouth-brooding fishes, the mouth performs a reproductive function in addition to its key roles in feeding and respiration, resulting in the potential for sex-specific functional performance trade-offs. Trait differences related to parental care may occur when the individual matures or be restricted to periods when the parent is mouth-brooding. This study explored sexual dimorphism and morphological trait adaptations related to feeding, breeding, respiration and locomotion performance in two paternal mouth-brooding freshwater fishes (Glossamia aprion and Neoarius graeffei). Eight morphological traits were evaluated for sexual dimorphism (non-brooder males vs. females) and male breeding state differences (brooders vs. non-brooders). Male breeding state was a significant predictor of trait variation in both species. Brooders differed in buccal volume and in several feeding and locomotory traits compared to non-brooder males. Non-brooder males had bigger buccal volumes and relative eye diameters (G. aprion) and larger relative gape sizes (N. graeffei) compared to females, a potential response to both mouth-brooding and feeding requirements. Although there were clear trait differences between brooder and non-brooder males, further research is required to confirm whether individuals return to their former morphology once mouth-brooding has ceased or if trait differences are maintained post-brooding. This study highlights the importance of considering the potential impacts of intraspecific trait variation on the performance of critical life functions, such as feeding, respiration and locomotion across the life history.


Assuntos
Peixes , Perciformes , Animais , Feminino , Masculino , Boca , Fenótipo , Reprodução , Caracteres Sexuais
8.
Biol Lett ; 18(5): 20210576, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506241

RESUMO

While mouthbrooding is not an uncommon parental care strategy in fishes, paternal mouthbrooding only occurs in eight fish families and is little studied. The high cost of paternal mouthbrooding to the male implies a low risk of investment in another male's offspring but genetic parentage patterns are poorly known for paternal mouthbrooders. Here, we used single-nucleotide polymorphism genetic data to investigate parentage relationships of broods of two mouthbrooders of northern Australian rivers, mouth almighty Glossamia aprion and blue catfish Neoarius graeffei. For N. graeffei, we found that the parentage pattern was largely monogamous with the brooder male as the sire. For G. aprion, the parentage pattern was more heterogeneous including observations of monogamous broods with the brooder male as the sire (73%), polygyny (13%), cuckoldry (6%) and a brood genetically unrelated to the brooder male (6%). Findings demonstrate the potential for complex interrelationships of male care, paternity confidence and mating behaviour in mouthbrooding fishes.


Assuntos
Reprodução , Comportamento Sexual Animal , Animais , Austrália , Peixes , Humanos , Masculino , Comportamento Paterno
9.
Mol Ecol ; 31(2): 419-447, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687569

RESUMO

Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests. However, despite their functional significance, the disturbance responses of forest microbial communities are poorly understood. Here, we explore the influence of disturbance on the soil microbiome (archaea, fungi and bacteria) of some of the world's tallest and most carbon-dense forests, the Mountain Ash forests of south-eastern Australia. From 80 sites, we identified 23,277 and 19,056 microbial operational taxonomic units from the 0-10 cm and 20-30 cm depths of soil respectively. From this extensive data set, we found the diversity and composition of these often cryptic communities has been altered by human and natural disturbance events. For instance, the diversity of ectomycorrhizal fungi declined with clearcut logging, the diversity of archaea declined with salvage logging, and bacterial diversity and overall microbial diversity declined with the number of fires. Moreover, we identified key associations between edaphic (soil properties), environmental (slope, elevation) and spatial variables and the composition of all microbial communities. Specifically, we found that soil pH, manganese, magnesium, phosphorus, iron and nitrate were associated with the composition of all microbial communities. In a period of widespread degradation of global forest ecosystems, our findings provide an important and timely insight into the disturbance responses of soil microbial communities, which may influence key ecological functions.


Assuntos
Incêndios , Microbiota , Micorrizas , Florestas , Humanos , Microbiota/genética , Solo , Microbiologia do Solo
10.
Ecol Lett ; 24(6): 1225-1236, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830614

RESUMO

Human and natural disturbances are key drivers of change in forest ecosystems. Yet, the direct and indirect mechanisms which underpin these changes remain poorly understood at the ecosystem level. Here, using structural equation modelling across a 150+ year chronosequence, we disentangle the direct and indirect effects of major disturbances in a temperate forest ecosystem. We show that wildfires, logging and post-fire (salvage) logging can affect plant and microbial communities and abiotic soil properties both directly and indirectly through plant-soil-microbial interactions. We quantified 68 direct and indirect disturbance effects across these components, with the majority resulting in ecosystem-wide adverse effects. Indirect disturbance effects accounted for 43% of total disturbance effects, with some amplifying or partially mitigating direct disturbance effects. Overall, human disturbances were associated with more negative effects than natural disturbances. Our analyses provide novel insights into the multifaceted dynamics of forest disturbances and the mechanisms which underpin their relative impacts.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , Humanos , Solo
11.
Heredity (Edinb) ; 126(5): 763-775, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664461

RESUMO

Conservation management is improved by incorporating information about the spatial distribution of population genetic diversity into planning strategies. Northern Australia is the location of some of the world's most severe ongoing declines of endemic mammal species, yet we have little genetic information from this regional mammal assemblage to inform a genetic perspective on conservation assessment and planning. We used next-generation sequencing data from remnant populations of the threatened brush-tailed rabbit-rat (Conilurus penicillatus) to compare patterns of genomic diversity and differentiation across the landscape and investigate standardised hierarchical genomic diversity metrics to better understand brush-tailed rabbit-rat population genomic structure. We found strong population structuring, with high levels of differentiation between populations (FST = 0.21-0.78). Two distinct genomic lineages between the Tiwi Islands and mainland are also present. Prioritisation analysis showed that one population in both lineages would need to be conserved to retain at least ~80% of alleles for the species. Analysis of standardised genomic diversity metrics showed that approximately half of the total diversity occurs among lineages (δ = 0.091 from grand total γ = 0.184). We suggest that a focus on conserving remnant island populations may not be appropriate for the preservation of species-level genomic diversity and adaptive potential, as these populations represent a small component of the total diversity and a narrow subset of the environmental conditions in which the species occurs. We also highlight the importance of considering both genomic and ecological differentiation between source and receiving populations when considering translocations for conservation purposes.


Assuntos
Genética Populacional , Metagenômica , Roedores , Animais , Austrália , Conservação dos Recursos Naturais , Variação Genética , Genoma , Genômica , Mamíferos , Roedores/genética
12.
Mol Ecol ; 30(10): 2248-2261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740830

RESUMO

Understanding local adaptation is critical for conservation management under rapidly changing environmental conditions. Local adaptation inferred from genotype-environment associations may show different genomic patterns depending on the spatial scale of sampling, due to differences in the slope of environmental gradients and the level of gene flow. We compared signatures of local adaptation across the genome of mountain ash (Eucalyptus regnans) at two spatial scales: A species-wide data set and a topographically-complex subregional data set. We genotyped 367 individual trees at over 3700 single-nucleotide polymorphisms (SNPs), quantified patterns of spatial genetic structure among populations, and used two analytical methods to identify loci associated with at least one of three environmental variables at each spatial scale. Together, the analyses identified 549 potentially adaptive SNPs at the subregion scale, and 435 SNPs at the range-wide scale. A total of 39 genic or near-genic SNPs, associated with 28 genes, were identified at both spatial scales, although no SNP was identified by both methods at both scales. We observed that nongenic regions had significantly higher homozygote excess than genic regions, possibly due to selective elimination of inbred genotypes during stand development. Our results suggest that strong environmental selection occurs in mountain ash, and that the identification of putatively adaptive loci can differ substantially depending on the spatial scale of analyses. We also highlight the importance of multiple adaptive genetic architectures for understanding patterns of local adaptation across large heterogenous landscapes, with comparison of putatively adaptive loci among spatial scales providing crucial insights into the process of adaptation.


Assuntos
Seleção Genética , Árvores , Aclimatação , Adaptação Fisiológica/genética , Genética Populacional , Genótipo , Polimorfismo de Nucleotídeo Único/genética
13.
PLoS One ; 15(6): e0234455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598368

RESUMO

Threatened species recovery programs are increasingly turning to reintroductions to reverse biodiversity loss. Here we present a real-world example where tactics (techniques which influence post-release performance and persistence) and an adaptive management framework (which incorporates feedback between monitoring and future actions) improved reintroduction success. Across three successive trials we investigated the influence of tactics on the effective survival and post-release dispersal of endangered eastern quolls (Dasyurus viverrinus) reintroduced into Mulligans Flat Woodland Sanctuary, Australian Capital Territory. Founders were monitored for 42 days post-release, and probability of survival and post-release dispersal were tested against trial, origin, sex, den sharing and presence of pouch young. We adopted an adaptive management framework, using monitoring to facilitate rapid learning and to implement interventions that improved reintroduction success. Founders released in the first trial were less likely to survive (28.6%, n = 14) than those founders released the second (76.9%, n = 13) and third trials (87.5%, n = 8). We adapted several tactics in the second and third trials, including the selection of female-only founders to avoid elevated male mortality, and post-mating releases to reduce stress. Founders that moved dens between consecutive nights were less likely to survive, suggesting that minimising post-release dispersal can increase the probability of survival. The probability of moving dens was lower in the second and third trials, for females, and when den sharing with another founder. This study demonstrates that, through iterative trials of tactics involving monitoring and learning, adaptive management can be used to significantly improve the success of reintroduction programs.


Assuntos
Carnívoros/fisiologia , Ecologia/métodos , Espécies em Perigo de Extinção , Marsupiais/fisiologia , Distribuição Animal , Animais , Austrália , Território da Capital Australiana , Monitorização de Parâmetros Ecológicos/métodos , Feminino , Masculino , Dinâmica Populacional , Probabilidade , Projetos de Pesquisa
14.
Trends Ecol Evol ; 35(4): 346-356, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187509

RESUMO

Fire is a powerful ecological and evolutionary force. Animals that modify drivers of fire behaviour could therefore have far-reaching effects on ecosystems. Yet, with a few notable exceptions, effects of animals on fire have been often overlooked. We show how animals can affect fire behaviour by modifying the amount, structure, or condition of fuel or, more rarely, by altering other controls on fire such as wind speed or ignition patterns. Some effects are readily observed and quantified. Others are more subtle but could be considerable when accumulated over time, space, and animal taxa. A combination of manipulative experiments, landscape studies, and multiscale fire models will be necessary to understand the consequences of widespread changes in animal populations for landscape fire.


Assuntos
Ecossistema , Animais
15.
Evol Appl ; 12(4): 845-860, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976314

RESUMO

Conservation management often uses information on genetic population structure to assess the importance of local provenancing for ecological restoration and reintroduction programs. For species that do not exhibit complete reproductive isolation, the estimation of population genetic parameters may be influenced by the extent of admixture. Therefore, to avoid perverse outcomes for conservation, genetically informed management strategies must determine whether hybridization between species is relevant, and the extent to which observed population genetic patterns are shaped by interspecific versus intraspecific gene flow. We used genotyping by sequencing to identify over 2,400 informative single nucleotide polymorphisms across 18 populations of Eucalyptus regnans F. Muell., a foundation tree species of montane forests in south-eastern Australia. We used these data to determine the extent of hybridization with another species, Eucalyptus obliqua L'Hér., and investigate how admixture influences genetic diversity parameters, by estimating metrics of genetic diversity and examining population genetic structure in datasets with and without admixed individuals. We found hybrid individuals at all sites and two highly introgressed populations. Hybrid individuals were not distributed evenly across environmental gradients, with logistic regression identifying hybrids as being associated with temperature. Removal of hybrids resulted in increases in genetic differentiation (F ST), expected heterozygosity, observed heterozygosity and the inbreeding coefficient, and different patterns of isolation by distance. After removal of hybrids and introgressed populations, mountain ash showed very little population genetic structure, with a small effect of isolation by distance, and very low global F ST(0.03). Our study shows that, in plants, decisions around provenancing of individuals for restoration depend on knowledge of whether hybridization is influencing population genetic structure. For species in which most genetic variation is held within populations, there may be little benefit in planning conservation strategies around environmental adaptation of seed sources. The possibility for adaptive introgression may also be relevant when species regularly hybridize.

16.
Biol Rev Camb Philos Soc ; 94(3): 981-998, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30565370

RESUMO

Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.


Assuntos
Ecossistema , Incêndios , Atividade Motora , Animais , Conservação dos Recursos Naturais , Dinâmica Populacional
17.
Evol Appl ; 11(7): 1162-1175, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30026804

RESUMO

Genetic monitoring of wild populations can offer insights into demographic and genetic information simultaneously. However, widespread application of genetic monitoring is hindered by large uncertainty in the estimation and interpretation of target metrics such as contemporary effective population size, Ne . We used four long-term genetic and demographic studies (≥9 years) to evaluate the temporal stability of the relationship between Ne and demographic population size (Nc ). These case studies focused on mammals that are continuously distributed, yet dispersal-limited within the spatial scale of the study. We estimated local, contemporary Ne with single-sample methods (LDNE, Heterozygosity Excess, and Molecular Ancestry) and demographic abundance with either mark-recapture estimates or catch-per-unit effort indices. Estimates of Ne varied widely within each case study suggesting interpretation of estimates is challenging. We found inconsistent correlations and trends both among estimates of Ne and between Ne and Nc suggesting the value of Ne as an indicator of Nc is limited in some cases. In the two case studies with consistent trends between Ne and Nc , FIS was more stable over time and lower, suggesting FIS may be a good indicator that the population was sampled at a spatial scale at which genetic structure is not biasing estimates of Ne . These results suggest that more empirical work on the estimation of Ne in continuous populations is needed to understand the appropriate context to use LDNe as a useful metric in a monitoring programme to detect temporal trends in either Ne or Nc .

18.
PLoS One ; 13(2): e0193132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474487

RESUMO

Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape.


Assuntos
Agricultura Florestal , Florestas , Fraxinus , Modelos Teóricos , Vento
19.
Ecol Appl ; 28(3): 826-841, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411919

RESUMO

Disturbances are key drivers of plant community composition, structure, and function. Plant functional traits, including life forms and reproductive strategies are critical to the resilience and resistance of plant communities in the event of disturbance. Climate change and increasing anthropogenic disturbance are altering natural disturbance regimes globally. When these regimes shift beyond the adaptive resilience of plant functional traits, local populations and ecosystem functions can become compromised. We tested the influence of multiple disturbances, of varying intensity and frequency, on the composition and abundance of vascular plant communities and their respective functional traits (life forms and reproductive strategies) in the wet sclerophyll, Mountain Ash Eucalyptus regnans forests of southeastern Australia. Specifically, we quantified the effect of the type and number of disturbances (including fires, clearcut logging, and salvage logging) on plant community composition. We found that clearcut and salvage logging and the number of fires significantly influenced plant community composition and functional traits. Specifically, multiple fires resulted in lower populations of species that depend on on-site seeding for persistence. This includes the common tree species Eucalyptus regnans, Pomaderris aspera, and Acacia dealbata. In contrast, clearcut and salvage logged sites supported abundant on-site seeder species. However, species that depend on resprouting by surviving individuals, such as common and keystone "tree ferns" Dicksonia antarctica and Cyathea australis, declined significantly. Our data have important implications for understanding the relationship between altered disturbance regimes and plant communities and the respective effects on ecosystem function. In a period of rapid global environmental change, with disturbances predicted to increase and intensify, it is critical to address the impact of altered disturbance regimes on biodiversity.


Assuntos
Incêndios , Florestas , Biodiversidade , Eucalyptus , Agricultura Florestal , Vitória
20.
Mol Ecol ; 27(1): 66-82, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29154412

RESUMO

For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure.


Assuntos
Padrões de Herança/genética , Mamíferos/genética , Comportamento Sexual Animal , Migração Animal , Animais , DNA Mitocondrial/genética , Feminino , Marcadores Genéticos , Masculino , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA