Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Dalton Trans ; 53(17): 7292-7302, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38587489

RESUMO

Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn2+ impurities in MAPbCl3 to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn2+ spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation. Pulsed EPR experiments are employed to measure the temperature dependences of the spin-lattice relaxation T1 and decoherence T2 times of the Mn2+ ions in the orthorhombic phase of MAPbCl3 revealing a coupling between the spin center and vibrations of the inorganic framework. Low-temperature electron spin echo envelope modulation (ESEEM) experiments of the protonated and deuterated MAPbCl3 analogues show the presence of quantum rotational tunneling of the ammonium groups, allowing to accurately probe their rotational energy landscape.

2.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475287

RESUMO

This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2). The dielectric permittivity strongly increases with the nanoparticle concentration according to the Maxwell-Garnet model. Therefore, the investigated composites are suitable for various flexible electronic applications, particularly in the microwave and terahertz frequency ranges. Dielectric dispersion and increased attenuation of ultrasonic waves were observed at lower temperatures (below 280 K) due to the relaxation of polymer molecules at the PDMS/TiO2 interface and in the polymer matrix. The relaxation time followed the Vogel-Vulcher law, while the freezing temperature increased with the titanium dioxide concentration due to interactions between the polymer molecules and nanoparticles. The significant hysteresis in the ultrasonic properties indicated that titanium dioxide acts as a crystallization center. This is confirmed by the correlation between the hysteresis in the ultrasonic properties and the structure of the composites. The small difference in the activation energy values obtained from the ultrasonic and dielectric investigations is related to the fact that the dielectric dispersion is slightly broader than the Debye-type dielectric dispersion.

3.
Chem Rev ; 124(5): 2281-2326, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421808

RESUMO

Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.

4.
J Magn Reson ; 356: 107573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37856964

RESUMO

Following the success of cryogenic EPR signal preamplification at X-band, we present a Q-band EPR cryoprobe compatible with a standard EPR resonator. The probehead is equipped with a cryogenic ultra low-noise microwave amplifier and its protection circuit that are placed close to the sample in the same cryostat. Our cryoprobe maintains the same sample access and tuning which is typical in Q-band EPR, as well as supports high-power pulsed experiments on typical samples. The performance of our setup is benchmarked against that of existing commercial and home-built Q-band spectrometers, using CW EPR and pulsed EPR/ENDOR experiments to reveal a significant sensitivity improvement which reduces the measurement time by a factor of about 40× at 6 K temperature at reduced power levels.

5.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850335

RESUMO

Bulk polylactic acid (PLA)/multiwall carbon nanotube (MWCNT) composites were prepared and investigated in wide frequency ranges (20 Hz-1 MHz and 24-40 GHz). It was determined that the percolation threshold in bulk PLA/MWCNT composites is close to 0.2 vol.% MWCNT. However, the best microwave dielectric properties and absorption were observed in composites with 3.0-5.0 vol.% MWCNT. Therefore, for future investigations, we selected layered (laminate) polymeric structures with gradual changes in MWCNT concentration from 0.2 to 8.0 vol.% MWCNT. Two approaches to laminate structure designs were examined and compared: a five-layer composite and a nine-layer composite that included four pure PLA middle layers. The addition of MWCNT enhanced the elastic modulus by up to 1.4-fold and tensile strength by up to 1.2-fold, with the best performance achieved at 5.0 vol.% loading. High microwave shielding was observed for these layered PLA/MWCNT structures with a gradient change in MWCNT concentration (up to 26 dB in both transmission and absorption coefficients) in the broad frequency range (from 24 to 40 GHz). Obtained structures are highly anisotropic, and the absorption coefficient is 2-5 dB higher in the direction of MWCNT concentration increase; however, the transmission coefficient is the same in both directions. The properties of microwave absorption are mainly unaffected by the additional polymeric layers. The absorption of the layered structure is greater than the absorption of single-layer composites with an optimal MWCNT concentration of the same thickness. The proposed laminate structure design is promising in the field of efficient electromagnetic shielding.

6.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770643

RESUMO

At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn2+ ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co2+ paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co2+ center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn2+ case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.

7.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771816

RESUMO

To address the ever-increasing electromagnetic interference (EMI) pollution, a hybrid filler approach for novel composites was chosen, with a focus on EMI absorbance. Carbon nanofiller loading was limited to 0.6 vol.% in order to create a sustainable and affordable solution. Multiwall carbon nanotubes (MWCNT) and iron oxide (Fe3O4) nanoparticles were mixed in nine ratios from 0.1 to 0.6 vol.% and 8.0 to 12.0 vol.%, respectively. With the addition of surfactant, excellent particle dispersion was achieved (examined with SEM micrographs) in a bio-based and biodegradable poly(butylene succinate) (PBS) matrix. Hybrid design synergy was assessed for EMI shielding using dielectric spectroscopy in the microwave region and transmittance in the terahertz range. The shielding effectiveness (20-52 dB) was dominated by very high absorption at 30 GHz, while in the 0.1 to 1.0 THz range, transmittance was reduced by up to 6 orders of magnitude. Frequency-independent AC electrical conductivity (from 10-2 to 107 Hz) was reached upon adding 0.6 vol.% MWCNT and 10 vol.% Fe3O4, with a value of around 3.1 × 10-2 S/m. Electrical and thermal conductivity were mainly affected by the content of MWCNT filler. The thermal conductivity scaled with the filler content and reached the highest value of 0.309 W/(mK) at 25 °C with the loading of 0.6 vol.% MWCNT and 12 vol.% Fe3O4. The surface resistivity showed an incremental decrease with an increase in MWCNT loading and was almost unaffected by an increase in iron oxide loading. Thermal conductivity was almost independent of temperature in the measured range of 25 to 45 °C. The nanocomposites serve as biodegradable alternatives to commodity plastic-based materials and are promising in the field of electromagnetic applications, especially for EMI shielding.

8.
J Magn Reson ; 346: 107356, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36516664

RESUMO

Inspired by the success of NMR cryoprobes, we recently reported a leap in X-band EPR sensitivity by equipping an ordinary EPR probehead with a cryogenic low-noise microwave amplifier placed closed to the sample in the same cryostat [Simenas et al. J. Magn. Reson.322, 106876 (2021)]. Here, we explore, theoretically and experimentally, a more general approach, where the amplifier temperature is independent of the sample temperature. This approach brings a number of important advantages, enabling sensitivity improvement irrespective of sample temperature, as well as making it more practical to combine with ENDOR and Q-band resonators, where space in the sample cryostat is often limited. Our experimental realisation places the cryogenic preamplifier within an external closed-cycle cryostat, and we show CW and pulsed EPR and ENDOR sensitivity improvements at both X- and Q-bands with negligible dependence on sample temperature. The cryoprobe delivers signal-to-noise ratio enhancements that reduce the equivalent pulsed EPR measurement time by 16× at X-band and close to 5× at Q-band. Using the theoretical framework we discuss further improvements of this approach which could be used to achieve even greater sensitivity.

9.
Materials (Basel) ; 15(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500156

RESUMO

We present studies on the microwave properties, electrical resistivity, and low-frequency (10 Hz-20 kHz) noise characteristics in the temperature range of 78 K to 380 K of composite materials made from bisphenol A-based epoxy resin and carbon fiber felts. Two types of carbon fibers were used, derived from polyacrylonitrile or regenerated cellulose. We show that these structures are suitable for electromagnetic shielding applications, especially in the direction parallel to the carbon fibers. The low-frequency voltage fluctuations observed in these materials are of the 1/fα, and the noise intensity is proportional to the square of the voltage. The characteristics of the investigated materials show an instability in the temperature range from 307 K to 332 K. This effect is followed by an increase in resistivity and noise intensity, but it does not change the character of the noise, and this instability vanishes after a few repeated heating and cooling cycles.

10.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295168

RESUMO

Ceramic composites with nanoparticles are intensively investigated due to their unique thermal, mechanic and electromagnetic properties. In this work, dielectric properties of phosphate ceramics with round silver nanoparticles of various sizes were studied in the wide frequency range of 20 Hz-40 GHz for microwave shielding applications. The percolation threshold in ceramics is close to 30 wt.% of Ag nanoparticles content and it is higher for bigger-sized nanoparticles. The microwave complex dielectric permittivity of ceramics above the percolation threshold is rather high (ε' = 10 and ε″ = 10 at 30 GHz for ceramics with 50 wt.% inclusions of 30-50 nm size, it corresponds to almost 61% absorption of 2 mm-thickness plate) therefore these ceramics are suitable for microwave shielding applications. Moreover, the microwave absorption is bigger for ceramics with a larger concentration of fillers. In addition, it was demonstrated that the electrical transport in ceramics is thermally activated above room temperature and the potential barrier is almost independent of the concentration of nanoparticles. At very low temperature, the electrical transport in ceramics can be related to electron tunneling.

11.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269106

RESUMO

Polymer composites with electrically conductive inclusions are intensively developed for microwave shielding applications, where lightweight and elastic coatings are necessary. In this paper, dielectric properties of hybrid polyethylene composites containing cobalt nanoparticles and multi-wall carbon nanotubes (MWCNT) were investigated in the wide frequency range of 20-40 GHz for electromagnetic shielding applications. The percolation threshold in the hybrid system is close to 6.95 wt% MWCNT and 0.56 Co wt%. Cobalt nanoparticles (up to highest investigated concentration 4.8 wt%) had no impact on the percolation threshold, and for the fixed total concentration of fillers, the complex dielectric permittivity is higher for composites with bigger MWCNT concentrations. Moreover, the microwave complex dielectric permittivity of composites with high concentration of fillers is quite high (for composites with 13.4 wt% MWCNT and 1.1 wt% Co ε' ≈ ε″ ≈ 20 at 30 GHz, it corresponds to microwave absorption 50% of 1 mm thickness plate); therefore, these composites are suitable for electromagnetic shielding applications.

12.
J Phys Chem B ; 125(45): 12592-12602, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748346

RESUMO

The 1H-13C cross-polarization (CP) kinetics in poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) was studied under moderate (10 kHz) magic-angle spinning (MAS). To elucidate the role of adsorbed water in spin diffusion and proton conductivity, PMETAC was degassed under vacuum. The CP MAS results were processed by applying the anisotropic Naito and McDowell spin dynamics model, which includes the complete scheme of the rotating frame spin-lattice relaxation pathways. Some earlier studied proton-conducting and nonconducting polymers were added to the analysis in order to prove the capability of the used approach and to get more general conclusions. The spin-diffusion rate constant, which describes the damping of the coherences, was found to be strongly depending on the dipolar I-S coupling constant (DIS). The spin diffusion, associated with the incoherent thermal equilibration with the bath, was found to be most probably independent of DIS. It was deduced that the drying scarcely influences the spin-diffusion rates; however, it significantly (1 order of magnitude) reduces the rotating frame spin-lattice relaxation times. The drying causes the polymer hardening that reflects the changes of the local order parameters. The impedance spectroscopy was applied to study proton conductivity. The activation energies for dielectric relaxation and proton conductivity were determined, and the vehicle-type conductivity mechanism was accepted. The spin-diffusion processes occur on the microsecond scale and are one order faster than the dielectric relaxation. The possibility to determine the proton location in the H-bonded structures in powders using CP MAS technique is discussed.


Assuntos
Polímeros , Prótons , Espectroscopia Dielétrica , Difusão , Espectroscopia de Ressonância Magnética
13.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640094

RESUMO

Polymer composites containing carbon nanofillers are extensively developed for electromagnetic shielding applications, where lightweight and flexible materials are required. One example of the microwave absorbers can be thermoplastic fibers fabricated from copolyamide hot melt adhesives and 7 wt% of multi-walled carbon nanotubes, as presented in this paper. A broadband dielectric spectroscopy confirmed that the addition of carbon nanotubes significantly increased microwave electrical properties of the thin (diameter about 100 µm) thermoplastic fibers. Moreover, the dielectric properties are improved for the thicker fibers, and they are almost stable at the frequency range 26-40 GHz and not dependent on the temperature. The variances in the dielectric properties of the fibers are associated with the degree of orientation of carbon nanotubes and the presence of bundles, which were examined using a high-resolution scanning microscope. Analyzing the mechanical properties of the nanocomposite fibers, as an effect of the carbon nanotubes addition, an improvement in the stiffness of the fibers was observed, together with a decrease in the fibers' elongation and tensile strength.

14.
Materials (Basel) ; 14(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34501154

RESUMO

Composite materials with 83 wt.% of the 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 distributed in phosphate-bonded ceramics were prepared at three different pressures. A phosphate matrix comprises a mixture of an aluminum phosphate binder and melted periclase, MgO. All samples demonstrate a homogeneous distribution of the ferroelectric perovskite phase and are thermally stable up to 900 K. At higher temperatures, the pyrochlore cubic phase forms. It has been found that the density of the composites non-monotonously depends on the pressure. The dielectric permittivity and losses substantially increase with the density of the samples. The fabricated composites demonstrate diffused ferroelectric-paraelectric transition and prominent piezoelectric properties.

15.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805067

RESUMO

Polymer matrix composites filled with carbon nanoparticles are promising materials for many applications, but their properties strongly depend on the particle features, concentration and distribution within the matrix. Here we present a study of the electrical resistivity and the low-frequency voltage fluctuation of composites based on epoxy resin filled with onion-like carbon (OLC) of different sizes (40-250 nm) above the percolation threshold, which should clarify the electrical transport characteristics in these materials. Electrical measurements were performed in the temperature range of 78 to 380 K, and voltage noise analysis was carried out from 10 Hz to 20 kHz. At low temperatures (below 250 K), thermally activated tunneling, variable-range hopping and generation-recombination of charge carriers take place. Above 250 K, the rapid expansion of the matrix with the temperature increases the resistivity, but above ~330 K, the conductivity of the matrix becomes significant. Quasi one-dimensional electrical transport is observed in composites with the smallest particles (40 nm), while in composites with the largest particles (220-250 nm), the dimensionality of the electrical transport is higher. The temperature dependence of the electrical conductivity of composites with smaller particles is more sensitive to matrix expansion.

16.
Nanomaterials (Basel) ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672334

RESUMO

The dielectric/electric properties of the Ni@C (carbon-coated Ni)/epoxy composites and Ni@C/MWCNTs (multi-walled carbon nanotubes)/epoxy composites loaded with fixed MWCNTs amount just below the percolation threshold (0.09 vol.%) and Ni@C at different concentrations up to 1 vol.% were investigated in broad frequency (20 Hz-40 GHz) and temperature (30 K-500 K) regions. In composites with the only Ni@C nanoparticles, the electrical percolation threshold was determined between 10 and 15 vol.%. Above the percolation threshold the dielectric permittivity (ε') and the electrical conductivity (σ) of the composites loaded with Ni@C only are high enough, i.e., ε' = 105 and σ = 0.6 S/m at 100 Hz for composites with 30 vol.% Ni@C, to be used for electromagnetic shielding applications. The annealing to 500 K was proved to be an effective and simple tool to decrease the percolation threshold in epoxy/Ni@C composites. For hybrid composites series an optimal concentration of Ni@C (0.2 vol.%) was determined, leading to the conductivity absolute values several orders of magnitude higher than that of a composite filled with MWCNTs only. The synergy effects of using both fillers have been discussed. Below room temperature the electrical transport is mainly governed by epoxy resin compression in all composites, while the electron tunnelling was observed only in hybrid composites below 200 K. At higher temperatures (above 400 K), in addition to the nanoparticles redistribution effects, the electrical conductivity of epoxy resin makes a significant contribution to the total composite conductivity. The dielectric relaxation spectroscopy allows estimating the nanoparticles distributions in polymer matrix and could be used as the non-destructive and fast alternate to microscopy techniques for general polymer composite fabrication control.

17.
Materials (Basel) ; 13(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260733

RESUMO

The electrical and magnetotransport properties of nanocrystalline tin dioxide films were studied in the temperature range of 4-300 K and in magnetic fields up to 8 T. SnO2-δ films were fabricated by reactive direct current (DC) magnetron sputtering of a tin target with following 2 stage temperature annealing of synthesized samples. The nanocrystalline rutile structure of films was confirmed by X-ray diffraction analysis. The temperature dependences of the resistance R(T) and the negative magnetoresistance (MR) were explained within the frame of a model, taking into account quantum corrections to the classical Drude conductivity. Extracted from the R(T) and R(B) dependences electron dephasing length values indicate the 3D character of the weak localization (WL) in our samples.

18.
Nat Commun ; 11(1): 5103, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037192

RESUMO

Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles.

19.
Materials (Basel) ; 13(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630508

RESUMO

The dielectric properties of Ba1-xCaxTiO3 (x = 0.17) ceramics were studied in a wide frequency range of 20 Hz-53 GHz. Diffused ferroelectric phase transition was revealed close to 339 K in the dielectric properties of ceramics. The behaviour of distributions of relaxation times in vicinity of the ferroelectric phase transition temperature is also typical for order-disorder ferroelectric phase transition. However, at lower temperatures (below 200 K), the most probable relaxation increased according to the Arrhenius law. At lower temperatures the maximum of the imaginary part of dielectric permittivity versus temperature strongly shifted to higher temperatures when the frequency increased (from 125 K at 1.21 kHz to 300 K at 33 GHz). This behaviour was attributed to the dynamics of Ti ions. The origin of the crossover from ferroelectric to relaxor behaviour of Ba1-xCaxTiO3 (x = 0.17) ceramics is discussed in the paper.

20.
Nat Commun ; 11(1): 3623, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681040

RESUMO

Polar van der Waals chalcogenophosphates exhibit unique properties, such as negative electrostriction and multi-well ferrielectricity, and enable combining dielectric and 2D electronic materials. Using low temperature piezoresponse force microscopy, we revealed coexistence of piezoelectric and non-piezoelectric phases in CuInP2Se6, forming unusual domain walls with enhanced piezoelectric response. From systematic imaging experiments we have inferred the formation of a partially polarized antiferroelectric state, with inclusions of structurally distinct ferrielectric domains enclosed by the corresponding phase boundaries. The assignment is strongly supported by optical spectroscopies and density-functional-theory calculations. Enhanced piezoresponse at the ferrielectric/antiferroelectric phase boundary and the ability to manipulate this entity with electric field on the nanoscale expand the existing phenomenology of functional domain walls. At the same time, phase-coexistence in chalcogenophosphates may lead to rational strategies for incorporation of ferroic functionality into van der Waals heterostructures, with stronger resilience toward detrimental size-effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA