Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 336: 139097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302504

RESUMO

To overcome the limitations imposed by Sn-Sb electrodes, the titanium foam (PMT)-TiO2-NTs@NiO-C/Sn-Sb composite electrodes with cubic crystal structure are synthesized by introducing NiO@C nanosheet arrays interlayer on the TiO2-NTs/PMT matrix through hydrothermal and carbonization process. Then a two-step pulsed electrodeposition method is used to prepare the Sn-Sb coating. Benefiting from the advantages of stacked 2D layer-sheet structure, the obtained electrodes exhibit enhanced stability and conductivity. Synergy of inner and outer layers fabricated by different pulse times strongly influence the electrochemical catalytic properties of the PMT-TiO2-NTs@NiO-C/Sn-Sb (Sn-Sb) electrode. Hence, the Sn-Sb (b0.5 h + w1 h) electrode is the optimal electrode to degrade the Crystalline Violet (CV). Next, the effect of the four experimental parameters (initial CV concentration, current density, pH value and supporting electrolyte concentration) on the degradation of CV by the electrode are investigated. The degradation of the CV is more sensitive to alkaline pH, and the rapid decolorization of CV when the pH is 10. Moreover, the possible electrocatalytic degradation pathway of CV is performed using HPLC-MS. Results from the tests show that the PMT-TiO2-NTs/NiO@C/Sn-Sb (b0.5 h + w1 h) electrode is an interesting alternative material in industrial wastewater applications.


Assuntos
Galvanoplastia , Águas Residuárias , Oxirredução , Titânio/química , Eletrodos
2.
ChemSusChem ; 16(5): e202201901, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36524753

RESUMO

Stable and efficient SnO2 electrodes are very promising for effectively degrading refractory organic pollutants in wastewater treatment. In this regard, we firstly prepared Ti3+ self-doped urchin-like rutile TiO2 nanoclusters (TiO2-x NCs) on a Ti mesh substrate by hydrothermal and electroreduction to serve as an interlayer for the deposition of Sb-SnO2 . The TiO2-x NCs/Sb-SnO2 anode exhibited a high oxygen evolution potential (2.63 V vs. SCE) and strong ⋅OH generation ability for the enhanced amount of absorbed oxygen species. Thus, the degradation results demonstrated its good rhodamine B (RhB), methylene blue (MB), alizarin yellow R (AYR), and methyl orange (MO) removal performance, with the rate constant increased 5.0, 1.9, 1.9, and 4.7 times, respectively, compared to the control Sb-SnO2 electrode. RhB and AYR degradation mechanisms are also proposed based on the results of high-performance liquid chromatography coupled with mass spectrometry and quenching experiments. More importantly, this unique rutile interlayer prolonged the anode lifetime sixfold, given its good lattice match with SnO2 and the three-dimensional concave-convex structure. Consequently, this work paves a new way for designing the crystal form and structure of the interlayers to obtain efficient and stable SnO2 electrodes for addressing dye wastewater problems.

3.
J Hazard Mater ; 430: 128440, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158250

RESUMO

Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic deposition (EPD) as an interlayer for preparing a novel PbO2 electrode. The well-conducted Ti3C2Tx interlayer significantly improved the electrochemical performance of the EPD-2.0/PbO2 (EPD time was 2.0 min) electrode with the charge transfer resistance decreased by 9.51 times, the inner active sites increased by 5.21 times and the ∙OH radicals generation ability enhanced by 4.07 times than the control EPD-0/PbO2 anode. Consequently, the EPD-2.0/PbO2 electrode achieved nearly 100% basic fuchsin (BF) and 86.78% COD removal efficiency after 3.0 h electrolysis. Therefore, this new PbO2 electrode presented a promising potential for electrochemical degradation of BF and the new Ti3C2Tx middle layer could also be used to fabricate other efficient and stable anodes, such as SnO2, MnO2, TiO2, etc.

4.
ACS Appl Mater Interfaces ; 12(31): 35193-35200, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32602699

RESUMO

Solar water evaporation is a promising and environment-friendly approach to relieve global water scarcity issues. Currently, many reports show that the voids and porous structure are beneficial to the absorption of solar energy to generate water steam. Herein, carbon nanospheres with central cavity structures are rationally designed by the one-step NaN3/fluorinated graphite deflagration method. The Na clusters derived from NaN3 deflagration are not only provided as the hollow templates but also react with fluorinated graphite to release heat, further boosting the formation of hollow carbon nanospheres (HCSs). Benefiting from the diversity of carbon nanomaterials, rough surface, unique hollow structures, and numerous micron/submicron holes, the light absorption ability, heat localization, and water supply capacity of HCSs have been significantly enhanced. Because of these advantages, the HCS-3 exhibits an excellent water evaporation efficiency of 92.7% at 1 kW m-2, which is much higher than that of carbon nanospheres, graphene oxide, and even most of the previous carbon materials. In addition, we demonstrated that the HCSs have a long-term stability and high efficiency of production of drinkable water and purifying various types of wastewater, including seawater, strong acid/alkaline water, and water containing dyes. To sum up, the deflagration synthetic technology as a facile and ultrafast process can be a new insight for future photothermal material design.

5.
Nanotechnology ; 31(5): 055601, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31622966

RESUMO

CuO@Al nanothermites with Al shell and CuO core were successfully fabricated via a simple self-assembly route. The composition and morphology of CuO@Al nanothermites were analyzed by x-ray diffraction and field-emission scanning electron microscopy in detail. When the equivalence ratio was 1.0, the heat output of CuO@Al nanothermites reached 1252 J g-1, which was significantly larger than that of the Al/CuO prepared by ultrasonic mixing. The greatest heat output of CuO@Al nanothermites reached 1860 J g-1, demonstrating outstanding exothermic properties, which ascribed to their unique core-shell structure. This study provides a new strategy about the design and advancement of highly exothermic nanothermites.

6.
Bioelectrochemistry ; 128: 49-55, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30917334

RESUMO

An effective and biodegradable Ficus tikoua leaves extract was studied as a corrosion inhibitor for carbon steel in hydrochloric acid. Systematic electrochemical experiments and morphological characterization were carried out to investigate the properties of the corrosion inhibitor. Meanwhile, quantum chemical calculations were performed to aid further understanding of the electrochemical mechanism. The electrochemical results reveal that the extract inhibitors act as a mixed-type with an inhibition efficiency up to 95.8% at 298 K. Moreover, this extract shows good inhibory activity at a wide range of temperatures and the corresponding results were further confirmed by morphological analysis. The chemical formulae of these major components are fully optimized in the DFT with B3LYP in the gas phase and the base set is 6-311++G (d, p).


Assuntos
Carbono/química , Corrosão , Ficus/química , Ácido Clorídrico/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Aço/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Materials (Basel) ; 10(8)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28812993

RESUMO

The biodegradable inhibitors, which could effectively reduce the rate of corrosion of carbon steel, were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The mixed-type inhibitors extracted from Eriobotrya japonica Thunb. leaf exhibited excellent inhibition performance, and the inhibition efficiency for carbon steel reached 90.0% at 298 K in hydrochloric acid. Moreover, the adsorption mechanism of the inhibitors on a carbon steel surface is described by the Langmuir adsorption isotherm. Simultaneously, the corrosion morphology of the carbon steel and the inhibitor structure were analyzed by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively.

8.
Sci Rep ; 7: 44994, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378783

RESUMO

Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(6): 1520-4, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26601359

RESUMO

High density polyethylene (HDPE) was widely used as rotational packaging case in the material reserve field. The chemical changes of HDPE, exposed to particular climatic conditions of tropic marine atmosphere for one year-long in Wanning Hainan, were elucidated by the attenuated total reflection infrared spectroscopy (ATR-FTIR). The structural changes were studied qualitatively, mainly from the polymeric chain breaking, branching and oxidation to distinguish the degradation profile. The variations of crystallinity & carbonyl index were also studied quantitatively according to the characteristic peaks intensity & area ratio. Finally, the relationships between structural changes and mechanical properties were investigated. The results showed that the polymeric chain breaking & branching play a leading role before 3 months in the aging progress. Then oxidation phenomena gradually takes place during 3-6 months. The chain branching & oxidation were predominant factors after 6 months. Nine months later, the oxidation was saturated gradually. Furthermore, the aging process is positively correlated to the temperature and irradiation. After 12 months aging, the carbonyl index increased by 112 times and crystallinity was 10% higher than before. The tensile/bending modulus deceased faster than tensile/bending strength of HDPE. The linear degree of tensile modulus and carbonyl index was 0.97. The degree of linearity of tensile strength and crystallinity calculated by feature bands (720-730 cm(-1)) was 0.96. It showed that the mechanical properties of HDPE can be speculated from the structural changes by ATR-FTIR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA