Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1361771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633465

RESUMO

Introduction: Fruit size is an important economic trait affecting jujube fruit quality, which has always been the focus of marker-assisted breeding of jujube traits. However, despite a large number of studies have been carried out, the mechanism and key genes regulating jujube fruit size are mostly unknown. Methods: In this study, we used a new analysis method Quantitative Trait Loci sequencing (QTL-seq) (bulked segregant analysis) to screen the parents 'Yuhong' and 'Jiaocheng 5' with significant phenotypic differences and mixed offspring group with extreme traits of large fruit and small fruit, respectively, and, then, DNA mixed pool sequencing was carried out to further shortening the QTL candidate interval for fruit size trait and excavated candidate genes for controlling fruit size. Results: The candidate intervals related to jujube fruit size were mainly located on chromosomes 1, 5, and 10, and the frequency of chromosome 1 was the highest. Based on the QTL-seq results, the annotation results of ANNOVAR were extracted from 424 SNPs (single-nucleotide polymorphisms) and 164 InDels (insertion-deletion), from which 40 candidate genes were selected, and 37 annotated candidate genes were found in the jujube genome. Four genes (LOC107428904, LOC107415626, LOC125420708, and LOC107418290) that are associated with fruit size growth and development were identified by functional annotation of the genes in NCBI (National Center for Biotechnology Information). The genes can provide a basis for further exploration and identification on genes regulating jujube fruit size. Discussion: In summary, the data obtained in this study revealed that QTL intervals and candidate genes for fruit size at the genomic level provide valuable resources for future functional studies and jujube breeding.

2.
Front Plant Sci ; 13: 1001850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275518

RESUMO

Chinese jujube (Ziziphus jujuba Mill.), a member of the genus Ziziphus, which comes under the family Rhamnaceae, is the most important species in terms of its economic, ecological, and social benefits. To dissect the loci associated with important phenotypical traits and analyze their genetic and genomic information in jujube, a whole-genome resequencing (WGR) based highly saturated genetic map was constructed using an F1 hybrid population of 140 progeny individuals derived from the cross of 'JMS2' × 'Jiaocheng 5'. The average sequencing depth of the parents was 14.09× and that of the progeny was 2.62×, and the average comparison efficiency between the sample and the reference genome was 97.09%. Three sets of genetic maps were constructed for a female parent, a male parent, and integrated. A total of 8,684 markers, including 8,158 SNP and 526 InDel markers, were evenly distributed across all 12 linkage groups (LGs) in the integrated map, spanning 1,713.22 cM with an average marker interval of 0.2 cM. In terms of marker number and density, this is the most saturated genetic map of jujube to date, nearly doubling that of the best ones previously reported. Based on this genetic map and phenotype data from 2019 to 2021, 31 leaf trait QTLs were identified in the linkage groups (LG1, 15; LG3, 1; LG5, 8; LG7, 4; LG8, 1, and LG11, 2), including 17 major QTLs. There were 4, 8, 14, and 5 QTLs that contributed to leaf length, leaf width, leaf shape index, and leaf area, respectively. Six QTLs clusters were detected on LG1 (8.05 cM-9.52 cM; 13.12 cM-13.99 cM; 123.84 cM-126.09 cM), LG5 (50.58 cM-50.86 cM; 80.10 cM-81.76 cM) and LG11 (35.98 cM-48.62 cM). Eight candidate genes were identified within the QTLs cluster regions. Annotation information showed that 4 genes (LOC107418196, LOC107418241, LOC107417968, and LOC112492570) in these QTLs are related to cell division and cell wall integrity. This research will provide a valuable tool for further QTL analysis, candidate gene identification, map-based gene cloning, comparative mapping, and marker-assisted selection (MAS) in jujube.

3.
Sci Rep ; 12(1): 2272, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145206

RESUMO

Jujube is a crop highly resistant to drought and salinity, making it one of the main fruit trees in Xinjiang. The present study evaluated the changes in the physicochemical and antioxidant activities of jujube fruit of eight different cultivars from Xinjiang, China. The developmental stages were selected according to the days after full bloom and fruit peel colour during ripening; these stages included young (S1), fruit core-hardening (S2), green ripening (S3), half-red maturity (S4) and complete red. In present study, different cultivars of jujube fruit showed similar chemical profiles, but their amounts showed great variation. HZ had the highest content of sugars, and JY had the highest content of cAMP and cGMP, while relatively higher levels of ascorbic acid, catechin, epicatechin, rutin, proanthocyanidin and antioxidant activity were found in 'FS' than in other cultivars, indicating that 'FS' could be used as a potential natural antioxidant. Regarding the development stages of jujube fruit, the moisture, ascorbic acid, total polyphenol, catechin, epicatechin, proanthocyanidin and rutin contents decreased during the development of all jujube cultivars, while the fructose, glucose, sucrose, cAMP, and cGMP contents greatly increased. The antioxidant activity determined by DPPH and ABTS radical scavenging decreased as the fruits matured. Therefore, the results suggest that green jujube (S1) could be used for natural antioxidants (catechin, epicatechin, proanthocyanidin) and that the advanced ripening stage(S5) is the proper picking period for fresh fruit and commercial processing.


Assuntos
Antioxidantes/metabolismo , Frutas/fisiologia , Fenóis/metabolismo , Ziziphus/fisiologia , Ácido Ascórbico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Especificidade da Espécie , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA